-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
pruning.rs
196 lines (180 loc) · 7.78 KB
/
pruning.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
use arrow::array::{ArrayRef, BooleanArray, Int32Array};
use arrow::datatypes::{DataType, Field, Schema, SchemaRef};
use datafusion::common::{DFSchema, ScalarValue};
use datafusion::execution::context::ExecutionProps;
use datafusion::physical_expr::create_physical_expr;
use datafusion::physical_optimizer::pruning::{PruningPredicate, PruningStatistics};
use datafusion::prelude::*;
use std::collections::HashSet;
use std::sync::Arc;
/// This example shows how to use DataFusion's `PruningPredicate` to prove
/// filter expressions can never be true based on statistics such as min/max
/// values of columns.
///
/// The process is called "pruning" and is commonly used in query engines to
/// quickly eliminate entire files / partitions / row groups of data from
/// consideration using statistical information from a catalog or other
/// metadata.
///
/// This example uses a user defined catalog to supply pruning information, as
/// one might do as part of a higher level storage engine. See
/// `parquet_index.rs` for an example that uses pruning in the context of an
/// individual query.
#[tokio::main]
async fn main() {
// In this example, we'll use the PruningPredicate to determine if
// the expression `x = 5 AND y = 10` can never be true based on statistics
// Start with the expression `x = 5 AND y = 10`
let expr = col("x").eq(lit(5)).and(col("y").eq(lit(10)));
// We can analyze this predicate using information provided by the
// `PruningStatistics` trait, in this case we'll use a simple catalog that
// models three files. For all rows in each file:
//
// File 1: x has values between `4` and `6`
// y has the value 10
//
// File 2: x has values between `4` and `6`
// y has the value of `7`
//
// File 3: x has the value 1
// nothing is known about the value of y
let my_catalog = MyCatalog::new();
// Create a `PruningPredicate`.
//
// Note the predicate does not automatically coerce types or simplify
// expressions. See expr_api.rs examples for how to do this if required
let predicate = create_pruning_predicate(expr, &my_catalog.schema);
// Evaluate the predicate for the three files in the catalog
let prune_results = predicate.prune(&my_catalog).unwrap();
println!("Pruning results: {prune_results:?}");
// The result is a `Vec` of bool values, one for each file in the catalog
assert_eq!(
prune_results,
vec![
// File 1: `x = 5 AND y = 10` can evaluate to true if x has values
// between `4` and `6`, y has the value `10`, so the file can not be
// skipped
//
// NOTE this doesn't mean there actually are rows that evaluate to
// true, but the pruning predicate can't prove there aren't any.
true,
// File 2: `x = 5 AND y = 10` can never evaluate to true because y
// has only the value of 7. Thus this file can be skipped.
false,
// File 3: `x = 5 AND y = 10` can never evaluate to true because x
// has the value `1`, and for any value of `y` the expression will
// evaluate to false (`x = 5 AND y = 10 -->` false AND null` -->
// `false`). Thus this file can also be skipped.
false
]
);
}
/// A simple model catalog that has information about the three files that store
/// data for a table with two columns (x and y).
struct MyCatalog {
schema: SchemaRef,
// (min, max) for x
x_values: Vec<(Option<i32>, Option<i32>)>,
// (min, max) for y
y_values: Vec<(Option<i32>, Option<i32>)>,
}
impl MyCatalog {
fn new() -> Self {
MyCatalog {
schema: Arc::new(Schema::new(vec![
Field::new("x", DataType::Int32, false),
Field::new("y", DataType::Int32, false),
])),
x_values: vec![
// File 1: x has values between `4` and `6`
(Some(4), Some(6)),
// File 2: x has values between `4` and `6`
(Some(4), Some(6)),
// File 3: x has the value 1
(Some(1), Some(1)),
],
y_values: vec![
// File 1: y has the value 10
(Some(10), Some(10)),
// File 2: y has the value of `7`
(Some(7), Some(7)),
// File 3: nothing is known about the value of y. This is
// represented as (None, None).
//
// Note, returning null means the value isn't known, NOT
// that we know the entire column is null.
(None, None),
],
}
}
}
/// We communicate the statistical information to DataFusion by implementing the
/// PruningStatistics trait.
impl PruningStatistics for MyCatalog {
fn num_containers(&self) -> usize {
// there are 3 files in this "catalog", and thus each array returned
// from min_values and max_values also has 3 elements
3
}
fn min_values(&self, column: &Column) -> Option<ArrayRef> {
// The pruning predicate evaluates the bounds for multiple expressions
// at once, so return an array with an element for the minimum value in
// each file
match column.name.as_str() {
"x" => Some(i32_array(self.x_values.iter().map(|(min, _)| min))),
"y" => Some(i32_array(self.y_values.iter().map(|(min, _)| min))),
name => panic!("unknown column name: {name}"),
}
}
fn max_values(&self, column: &Column) -> Option<ArrayRef> {
// similarly to min_values, return an array with an element for the
// maximum value in each file
match column.name.as_str() {
"x" => Some(i32_array(self.x_values.iter().map(|(_, max)| max))),
"y" => Some(i32_array(self.y_values.iter().map(|(_, max)| max))),
name => panic!("unknown column name: {name}"),
}
}
fn null_counts(&self, _column: &Column) -> Option<ArrayRef> {
// In this example, we know nothing about the number of nulls
None
}
fn row_counts(&self, _column: &Column) -> Option<ArrayRef> {
// In this example, we know nothing about the number of rows in each file
None
}
fn contained(
&self,
_column: &Column,
_values: &HashSet<ScalarValue>,
) -> Option<BooleanArray> {
// this method can be used to implement Bloom filter like filtering
// but we do not illustrate that here
None
}
}
fn create_pruning_predicate(expr: Expr, schema: &SchemaRef) -> PruningPredicate {
let df_schema = DFSchema::try_from(schema.as_ref().clone()).unwrap();
let props = ExecutionProps::new();
let physical_expr = create_physical_expr(&expr, &df_schema, &props).unwrap();
PruningPredicate::try_new(physical_expr, schema.clone()).unwrap()
}
fn i32_array<'a>(values: impl Iterator<Item = &'a Option<i32>>) -> ArrayRef {
Arc::new(Int32Array::from_iter(values.cloned()))
}