-
Notifications
You must be signed in to change notification settings - Fork 787
/
pyarrow.rs
516 lines (447 loc) · 21.3 KB
/
pyarrow.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Pass Arrow objects from and to PyArrow, using Arrow's
//! [C Data Interface](https://arrow.apache.org/docs/format/CDataInterface.html)
//! and [pyo3](https://docs.rs/pyo3/latest/pyo3/).
//!
//! For underlying implementation, see the [ffi] module.
//!
//! One can use these to write Python functions that take and return PyArrow
//! objects, with automatic conversion to corresponding arrow-rs types.
//!
//! ```ignore
//! #[pyfunction]
//! fn double_array(array: PyArrowType<ArrayData>) -> PyResult<PyArrowType<ArrayData>> {
//! let array = array.0; // Extract from PyArrowType wrapper
//! let array: Arc<dyn Array> = make_array(array); // Convert ArrayData to ArrayRef
//! let array: &Int32Array = array.as_any().downcast_ref()
//! .ok_or_else(|| PyValueError::new_err("expected int32 array"))?;
//! let array: Int32Array = array.iter().map(|x| x.map(|x| x * 2)).collect();
//! Ok(PyArrowType(array.into_data()))
//! }
//! ```
//!
//! | pyarrow type | arrow-rs type |
//! |-----------------------------|--------------------------------------------------------------------|
//! | `pyarrow.DataType` | [DataType] |
//! | `pyarrow.Field` | [Field] |
//! | `pyarrow.Schema` | [Schema] |
//! | `pyarrow.Array` | [ArrayData] |
//! | `pyarrow.RecordBatch` | [RecordBatch] |
//! | `pyarrow.RecordBatchReader` | [ArrowArrayStreamReader] / `Box<dyn RecordBatchReader + Send>` (1) |
//!
//! (1) `pyarrow.RecordBatchReader` can be imported as [ArrowArrayStreamReader]. Either
//! [ArrowArrayStreamReader] or `Box<dyn RecordBatchReader + Send>` can be exported
//! as `pyarrow.RecordBatchReader`. (`Box<dyn RecordBatchReader + Send>` is typically
//! easier to create.)
//!
//! PyArrow has the notion of chunked arrays and tables, but arrow-rs doesn't
//! have these same concepts. A chunked table is instead represented with
//! `Vec<RecordBatch>`. A `pyarrow.Table` can be imported to Rust by calling
//! [pyarrow.Table.to_reader()](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table.to_reader)
//! and then importing the reader as a [ArrowArrayStreamReader].
use std::convert::{From, TryFrom};
use std::ptr::{addr_of, addr_of_mut};
use std::sync::Arc;
use arrow_array::{RecordBatchIterator, RecordBatchOptions, RecordBatchReader, StructArray};
use pyo3::exceptions::{PyTypeError, PyValueError};
use pyo3::ffi::Py_uintptr_t;
use pyo3::import_exception;
use pyo3::prelude::*;
use pyo3::pybacked::PyBackedStr;
use pyo3::types::{PyCapsule, PyList, PyTuple};
use crate::array::{make_array, ArrayData};
use crate::datatypes::{DataType, Field, Schema};
use crate::error::ArrowError;
use crate::ffi;
use crate::ffi::{FFI_ArrowArray, FFI_ArrowSchema};
use crate::ffi_stream::{ArrowArrayStreamReader, FFI_ArrowArrayStream};
use crate::record_batch::RecordBatch;
import_exception!(pyarrow, ArrowException);
/// Represents an exception raised by PyArrow.
pub type PyArrowException = ArrowException;
fn to_py_err(err: ArrowError) -> PyErr {
PyArrowException::new_err(err.to_string())
}
/// Trait for converting Python objects to arrow-rs types.
pub trait FromPyArrow: Sized {
/// Convert a Python object to an arrow-rs type.
///
/// Takes a GIL-bound value from Python and returns a result with the arrow-rs type.
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self>;
}
/// Create a new PyArrow object from a arrow-rs type.
pub trait ToPyArrow {
/// Convert the implemented type into a Python object without consuming it.
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject>;
}
/// Convert an arrow-rs type into a PyArrow object.
pub trait IntoPyArrow {
/// Convert the implemented type into a Python object while consuming it.
fn into_pyarrow(self, py: Python) -> PyResult<PyObject>;
}
impl<T: ToPyArrow> IntoPyArrow for T {
fn into_pyarrow(self, py: Python) -> PyResult<PyObject> {
self.to_pyarrow(py)
}
}
fn validate_class(expected: &str, value: &Bound<PyAny>) -> PyResult<()> {
let pyarrow = PyModule::import_bound(value.py(), "pyarrow")?;
let class = pyarrow.getattr(expected)?;
if !value.is_instance(&class)? {
let expected_module = class.getattr("__module__")?.extract::<PyBackedStr>()?;
let expected_name = class.getattr("__name__")?.extract::<PyBackedStr>()?;
let found_class = value.get_type();
let found_module = found_class
.getattr("__module__")?
.extract::<PyBackedStr>()?;
let found_name = found_class.getattr("__name__")?.extract::<PyBackedStr>()?;
return Err(PyTypeError::new_err(format!(
"Expected instance of {}.{}, got {}.{}",
expected_module, expected_name, found_module, found_name
)));
}
Ok(())
}
fn validate_pycapsule(capsule: &Bound<PyCapsule>, name: &str) -> PyResult<()> {
let capsule_name = capsule.name()?;
if capsule_name.is_none() {
return Err(PyValueError::new_err(
"Expected schema PyCapsule to have name set.",
));
}
let capsule_name = capsule_name.unwrap().to_str()?;
if capsule_name != name {
return Err(PyValueError::new_err(format!(
"Expected name '{}' in PyCapsule, instead got '{}'",
name, capsule_name
)));
}
Ok(())
}
impl FromPyArrow for DataType {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_schema__")? {
let capsule = value.getattr("__arrow_c_schema__")?.call0()?;
let capsule = capsule.downcast::<PyCapsule>()?;
validate_pycapsule(capsule, "arrow_schema")?;
let schema_ptr = unsafe { capsule.reference::<FFI_ArrowSchema>() };
let dtype = DataType::try_from(schema_ptr).map_err(to_py_err)?;
return Ok(dtype);
}
validate_class("DataType", value)?;
let c_schema = FFI_ArrowSchema::empty();
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
value.call_method1("_export_to_c", (c_schema_ptr as Py_uintptr_t,))?;
let dtype = DataType::try_from(&c_schema).map_err(to_py_err)?;
Ok(dtype)
}
}
impl ToPyArrow for DataType {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
let c_schema = FFI_ArrowSchema::try_from(self).map_err(to_py_err)?;
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
let module = py.import_bound("pyarrow")?;
let class = module.getattr("DataType")?;
let dtype = class.call_method1("_import_from_c", (c_schema_ptr as Py_uintptr_t,))?;
Ok(dtype.into())
}
}
impl FromPyArrow for Field {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_schema__")? {
let capsule = value.getattr("__arrow_c_schema__")?.call0()?;
let capsule = capsule.downcast::<PyCapsule>()?;
validate_pycapsule(capsule, "arrow_schema")?;
let schema_ptr = unsafe { capsule.reference::<FFI_ArrowSchema>() };
let field = Field::try_from(schema_ptr).map_err(to_py_err)?;
return Ok(field);
}
validate_class("Field", value)?;
let c_schema = FFI_ArrowSchema::empty();
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
value.call_method1("_export_to_c", (c_schema_ptr as Py_uintptr_t,))?;
let field = Field::try_from(&c_schema).map_err(to_py_err)?;
Ok(field)
}
}
impl ToPyArrow for Field {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
let c_schema = FFI_ArrowSchema::try_from(self).map_err(to_py_err)?;
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
let module = py.import_bound("pyarrow")?;
let class = module.getattr("Field")?;
let dtype = class.call_method1("_import_from_c", (c_schema_ptr as Py_uintptr_t,))?;
Ok(dtype.into())
}
}
impl FromPyArrow for Schema {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_schema__")? {
let capsule = value.getattr("__arrow_c_schema__")?.call0()?;
let capsule = capsule.downcast::<PyCapsule>()?;
validate_pycapsule(capsule, "arrow_schema")?;
let schema_ptr = unsafe { capsule.reference::<FFI_ArrowSchema>() };
let schema = Schema::try_from(schema_ptr).map_err(to_py_err)?;
return Ok(schema);
}
validate_class("Schema", value)?;
let c_schema = FFI_ArrowSchema::empty();
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
value.call_method1("_export_to_c", (c_schema_ptr as Py_uintptr_t,))?;
let schema = Schema::try_from(&c_schema).map_err(to_py_err)?;
Ok(schema)
}
}
impl ToPyArrow for Schema {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
let c_schema = FFI_ArrowSchema::try_from(self).map_err(to_py_err)?;
let c_schema_ptr = &c_schema as *const FFI_ArrowSchema;
let module = py.import_bound("pyarrow")?;
let class = module.getattr("Schema")?;
let schema = class.call_method1("_import_from_c", (c_schema_ptr as Py_uintptr_t,))?;
Ok(schema.into())
}
}
impl FromPyArrow for ArrayData {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_array__")? {
let tuple = value.getattr("__arrow_c_array__")?.call0()?;
if !tuple.is_instance_of::<PyTuple>() {
return Err(PyTypeError::new_err(
"Expected __arrow_c_array__ to return a tuple.",
));
}
let schema_capsule = tuple.get_item(0)?;
let schema_capsule = schema_capsule.downcast::<PyCapsule>()?;
let array_capsule = tuple.get_item(1)?;
let array_capsule = array_capsule.downcast::<PyCapsule>()?;
validate_pycapsule(schema_capsule, "arrow_schema")?;
validate_pycapsule(array_capsule, "arrow_array")?;
let schema_ptr = unsafe { schema_capsule.reference::<FFI_ArrowSchema>() };
let array = unsafe { FFI_ArrowArray::from_raw(array_capsule.pointer() as _) };
return unsafe { ffi::from_ffi(array, schema_ptr) }.map_err(to_py_err);
}
validate_class("Array", value)?;
// prepare a pointer to receive the Array struct
let mut array = FFI_ArrowArray::empty();
let mut schema = FFI_ArrowSchema::empty();
// make the conversion through PyArrow's private API
// this changes the pointer's memory and is thus unsafe.
// In particular, `_export_to_c` can go out of bounds
value.call_method1(
"_export_to_c",
(
addr_of_mut!(array) as Py_uintptr_t,
addr_of_mut!(schema) as Py_uintptr_t,
),
)?;
unsafe { ffi::from_ffi(array, &schema) }.map_err(to_py_err)
}
}
impl ToPyArrow for ArrayData {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
let array = FFI_ArrowArray::new(self);
let schema = FFI_ArrowSchema::try_from(self.data_type()).map_err(to_py_err)?;
let module = py.import_bound("pyarrow")?;
let class = module.getattr("Array")?;
let array = class.call_method1(
"_import_from_c",
(
addr_of!(array) as Py_uintptr_t,
addr_of!(schema) as Py_uintptr_t,
),
)?;
Ok(array.to_object(py))
}
}
impl<T: FromPyArrow> FromPyArrow for Vec<T> {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
let list = value.downcast::<PyList>()?;
list.iter().map(|x| T::from_pyarrow_bound(&x)).collect()
}
}
impl<T: ToPyArrow> ToPyArrow for Vec<T> {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
let values = self
.iter()
.map(|v| v.to_pyarrow(py))
.collect::<PyResult<Vec<_>>>()?;
Ok(values.to_object(py))
}
}
impl FromPyArrow for RecordBatch {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_array__")? {
let tuple = value.getattr("__arrow_c_array__")?.call0()?;
if !tuple.is_instance_of::<PyTuple>() {
return Err(PyTypeError::new_err(
"Expected __arrow_c_array__ to return a tuple.",
));
}
let schema_capsule = tuple.get_item(0)?;
let schema_capsule = schema_capsule.downcast::<PyCapsule>()?;
let array_capsule = tuple.get_item(1)?;
let array_capsule = array_capsule.downcast::<PyCapsule>()?;
validate_pycapsule(schema_capsule, "arrow_schema")?;
validate_pycapsule(array_capsule, "arrow_array")?;
let schema_ptr = unsafe { schema_capsule.reference::<FFI_ArrowSchema>() };
let ffi_array = unsafe { FFI_ArrowArray::from_raw(array_capsule.pointer().cast()) };
let mut array_data =
unsafe { ffi::from_ffi(ffi_array, schema_ptr) }.map_err(to_py_err)?;
if !matches!(array_data.data_type(), DataType::Struct(_)) {
return Err(PyTypeError::new_err(
"Expected Struct type from __arrow_c_array.",
));
}
let options = RecordBatchOptions::default().with_row_count(Some(array_data.len()));
// Ensure data is aligned (by potentially copying the buffers).
// This is needed because some python code (for example the
// python flight client) produces unaligned buffers
// See https://github.com/apache/arrow/issues/43552 for details
array_data.align_buffers();
let array = StructArray::from(array_data);
// StructArray does not embed metadata from schema. We need to override
// the output schema with the schema from the capsule.
let schema = Arc::new(Schema::try_from(schema_ptr).map_err(to_py_err)?);
let (_fields, columns, nulls) = array.into_parts();
assert_eq!(
nulls.map(|n| n.null_count()).unwrap_or_default(),
0,
"Cannot convert nullable StructArray to RecordBatch, see StructArray documentation"
);
return RecordBatch::try_new_with_options(schema, columns, &options).map_err(to_py_err);
}
validate_class("RecordBatch", value)?;
// TODO(kszucs): implement the FFI conversions in arrow-rs for RecordBatches
let schema = value.getattr("schema")?;
let schema = Arc::new(Schema::from_pyarrow_bound(&schema)?);
let arrays = value.getattr("columns")?;
let arrays = arrays
.downcast::<PyList>()?
.iter()
.map(|a| Ok(make_array(ArrayData::from_pyarrow_bound(&a)?)))
.collect::<PyResult<_>>()?;
let row_count = value
.getattr("num_rows")
.ok()
.and_then(|x| x.extract().ok());
let options = RecordBatchOptions::default().with_row_count(row_count);
let batch =
RecordBatch::try_new_with_options(schema, arrays, &options).map_err(to_py_err)?;
Ok(batch)
}
}
impl ToPyArrow for RecordBatch {
fn to_pyarrow(&self, py: Python) -> PyResult<PyObject> {
// Workaround apache/arrow#37669 by returning RecordBatchIterator
let reader = RecordBatchIterator::new(vec![Ok(self.clone())], self.schema());
let reader: Box<dyn RecordBatchReader + Send> = Box::new(reader);
let py_reader = reader.into_pyarrow(py)?;
py_reader.call_method0(py, "read_next_batch")
}
}
/// Supports conversion from `pyarrow.RecordBatchReader` to [ArrowArrayStreamReader].
impl FromPyArrow for ArrowArrayStreamReader {
fn from_pyarrow_bound(value: &Bound<PyAny>) -> PyResult<Self> {
// Newer versions of PyArrow as well as other libraries with Arrow data implement this
// method, so prefer it over _export_to_c.
// See https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
if value.hasattr("__arrow_c_stream__")? {
let capsule = value.getattr("__arrow_c_stream__")?.call0()?;
let capsule = capsule.downcast::<PyCapsule>()?;
validate_pycapsule(capsule, "arrow_array_stream")?;
let stream = unsafe { FFI_ArrowArrayStream::from_raw(capsule.pointer() as _) };
let stream_reader = ArrowArrayStreamReader::try_new(stream)
.map_err(|err| PyValueError::new_err(err.to_string()))?;
return Ok(stream_reader);
}
validate_class("RecordBatchReader", value)?;
// prepare a pointer to receive the stream struct
let mut stream = FFI_ArrowArrayStream::empty();
let stream_ptr = &mut stream as *mut FFI_ArrowArrayStream;
// make the conversion through PyArrow's private API
// this changes the pointer's memory and is thus unsafe.
// In particular, `_export_to_c` can go out of bounds
let args = PyTuple::new_bound(value.py(), [stream_ptr as Py_uintptr_t]);
value.call_method1("_export_to_c", args)?;
let stream_reader = ArrowArrayStreamReader::try_new(stream)
.map_err(|err| PyValueError::new_err(err.to_string()))?;
Ok(stream_reader)
}
}
/// Convert a [`RecordBatchReader`] into a `pyarrow.RecordBatchReader`.
impl IntoPyArrow for Box<dyn RecordBatchReader + Send> {
// We can't implement `ToPyArrow` for `T: RecordBatchReader + Send` because
// there is already a blanket implementation for `T: ToPyArrow`.
fn into_pyarrow(self, py: Python) -> PyResult<PyObject> {
let mut stream = FFI_ArrowArrayStream::new(self);
let stream_ptr = (&mut stream) as *mut FFI_ArrowArrayStream;
let module = py.import_bound("pyarrow")?;
let class = module.getattr("RecordBatchReader")?;
let args = PyTuple::new_bound(py, [stream_ptr as Py_uintptr_t]);
let reader = class.call_method1("_import_from_c", args)?;
Ok(PyObject::from(reader))
}
}
/// Convert a [`ArrowArrayStreamReader`] into a `pyarrow.RecordBatchReader`.
impl IntoPyArrow for ArrowArrayStreamReader {
fn into_pyarrow(self, py: Python) -> PyResult<PyObject> {
let boxed: Box<dyn RecordBatchReader + Send> = Box::new(self);
boxed.into_pyarrow(py)
}
}
/// A newtype wrapper for types implementing [`FromPyArrow`] or [`IntoPyArrow`].
///
/// When wrapped around a type `T: FromPyArrow`, it
/// implements [`FromPyObject`] for the PyArrow objects. When wrapped around a
/// `T: IntoPyArrow`, it implements `IntoPy<PyObject>` for the wrapped type.
#[derive(Debug)]
pub struct PyArrowType<T>(pub T);
impl<'source, T: FromPyArrow> FromPyObject<'source> for PyArrowType<T> {
fn extract_bound(value: &Bound<'source, PyAny>) -> PyResult<Self> {
Ok(Self(T::from_pyarrow_bound(value)?))
}
}
impl<T: IntoPyArrow> IntoPy<PyObject> for PyArrowType<T> {
fn into_py(self, py: Python) -> PyObject {
match self.0.into_pyarrow(py) {
Ok(obj) => obj,
Err(err) => err.to_object(py),
}
}
}
impl<T> From<T> for PyArrowType<T> {
fn from(s: T) -> Self {
Self(s)
}
}