-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
dataset.R
576 lines (551 loc) · 22.2 KB
/
dataset.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#' Open a multi-file dataset
#'
#' Arrow Datasets allow you to query against data that has been split across
#' multiple files. This sharding of data may indicate partitioning, which
#' can accelerate queries that only touch some partitions (files). Call
#' `open_dataset()` to point to a directory of data files and return a
#' `Dataset`, then use `dplyr` methods to query it.
#'
#' @section Partitioning:
#'
#' Data is often split into multiple files and nested in subdirectories based on the value of one or more
#' columns in the data. It may be a column that is commonly referenced in
#' queries, or it may be time-based, for some examples. Data that is divided
#' this way is "partitioned," and the values for those partitioning columns are
#' encoded into the file path segments.
#' These path segments are effectively virtual columns in the dataset, and
#' because their values are known prior to reading the files themselves, we can
#' greatly speed up filtered queries by skipping some files entirely.
#'
#' Arrow supports reading partition information from file paths in two forms:
#'
#' * "Hive-style", deriving from the Apache Hive project and common to some
#' database systems. Partitions are encoded as "key=value" in path segments,
#' such as `"year=2019/month=1/file.parquet"`. While they may be awkward as
#' file names, they have the advantage of being self-describing.
#' * "Directory" partitioning, which is Hive without the key names, like
#' `"2019/01/file.parquet"`. In order to use these, we need know at least
#' what names to give the virtual columns that come from the path segments.
#'
#' The default behavior in `open_dataset()` is to inspect the file paths
#' contained in the provided directory, and if they look like Hive-style, parse
#' them as Hive. If your dataset has Hive-style partioning in the file paths,
#' you do not need to provide anything in the `partitioning` argument to
#' `open_dataset()` to use them. If you do provide a character vector of
#' partition column names, they will be ignored if they match what is detected,
#' and if they don't match, you'll get an error. (If you want to rename
#' partition columns, do that using `select()` or `rename()` after opening the
#' dataset.). If you provide a `Schema` and the names match what is detected,
#' it will use the types defined by the Schema. In the example file path above,
#' you could provide a Schema to specify that "month" should be `int8()`
#' instead of the `int32()` it will be parsed as by default.
#'
#' If your file paths do not appear to be Hive-style, or if you pass
#' `hive_style = FALSE`, the `partitioning` argument will be used to create
#' Directory partitioning. A character vector of names is required to create
#' partitions; you may instead provide a `Schema` to map those names to desired
#' column types, as described above. If neither are provided, no partitioning
#' information will be taken from the file paths.
#'
#' @param sources One of:
#' * a string path or URI to a directory containing data files
#' * a [FileSystem] that references a directory containing data files
#' (such as what is returned by [s3_bucket()])
#' * a string path or URI to a single file
#' * a character vector of paths or URIs to individual data files
#' * a list of `Dataset` objects as created by this function
#' * a list of `DatasetFactory` objects as created by [dataset_factory()].
#'
#' When `sources` is a vector of file URIs, they must all use the same protocol
#' and point to files located in the same file system and having the same
#' format.
#' @param schema [Schema] for the `Dataset`. If `NULL` (the default), the schema
#' will be inferred from the data sources.
#' @param partitioning When `sources` is a directory path/URI, one of:
#' * a `Schema`, in which case the file paths relative to `sources` will be
#' parsed, and path segments will be matched with the schema fields.
#' * a character vector that defines the field names corresponding to those
#' path segments (that is, you're providing the names that would correspond
#' to a `Schema` but the types will be autodetected)
#' * a `Partitioning` or `PartitioningFactory`, such as returned
#' by [hive_partition()]
#' * `NULL` for no partitioning
#'
#' The default is to autodetect Hive-style partitions unless
#' `hive_style = FALSE`. See the "Partitioning" section for details.
#' When `sources` is not a directory path/URI, `partitioning` is ignored.
#' @param hive_style Logical: should `partitioning` be interpreted as
#' Hive-style? Default is `NA`, which means to inspect the file paths for
#' Hive-style partitioning and behave accordingly.
#' @param unify_schemas logical: should all data fragments (files, `Dataset`s)
#' be scanned in order to create a unified schema from them? If `FALSE`, only
#' the first fragment will be inspected for its schema. Use this fast path
#' when you know and trust that all fragments have an identical schema.
#' The default is `FALSE` when creating a dataset from a directory path/URI or
#' vector of file paths/URIs (because there may be many files and scanning may
#' be slow) but `TRUE` when `sources` is a list of `Dataset`s (because there
#' should be few `Dataset`s in the list and their `Schema`s are already in
#' memory).
#' @param format A [FileFormat] object, or a string identifier of the format of
#' the files in `x`. This argument is ignored when `sources` is a list of `Dataset` objects.
#' Currently supported values:
#' * "parquet"
#' * "ipc"/"arrow"/"feather", all aliases for each other; for Feather, note that
#' only version 2 files are supported
#' * "csv"/"text", aliases for the same thing (because comma is the default
#' delimiter for text files
#' * "tsv", equivalent to passing `format = "text", delimiter = "\t"`
#'
#' Default is "parquet", unless a `delimiter` is also specified, in which case
#' it is assumed to be "text".
#' @param ... additional arguments passed to `dataset_factory()` when `sources`
#' is a directory path/URI or vector of file paths/URIs, otherwise ignored.
#' These may include `format` to indicate the file format, or other
#' format-specific options (see [read_csv_arrow()], [read_parquet()] and [read_feather()] on how to specify these).
#' @inheritParams dataset_factory
#' @return A [Dataset] R6 object. Use `dplyr` methods on it to query the data,
#' or call [`$NewScan()`][Scanner] to construct a query directly.
#' @export
#' @seealso \href{https://arrow.apache.org/docs/r/articles/dataset.html}{
#' datasets article}
#' @include arrow-object.R
#' @examplesIf arrow_with_dataset() & arrow_with_parquet()
#' # Set up directory for examples
#' tf <- tempfile()
#' dir.create(tf)
#' on.exit(unlink(tf))
#'
#' write_dataset(mtcars, tf, partitioning = "cyl")
#'
#' # You can specify a directory containing the files for your dataset and
#' # open_dataset will scan all files in your directory.
#' open_dataset(tf)
#'
#' # You can also supply a vector of paths
#' open_dataset(c(file.path(tf, "cyl=4/part-0.parquet"), file.path(tf, "cyl=8/part-0.parquet")))
#'
#' ## You must specify the file format if using a format other than parquet.
#' tf2 <- tempfile()
#' dir.create(tf2)
#' on.exit(unlink(tf2))
#' write_dataset(mtcars, tf2, format = "ipc")
#' # This line will results in errors when you try to work with the data
#' \dontrun{
#' open_dataset(tf2)
#' }
#' # This line will work
#' open_dataset(tf2, format = "ipc")
#'
#' ## You can specify file partitioning to include it as a field in your dataset
#' # Create a temporary directory and write example dataset
#' tf3 <- tempfile()
#' dir.create(tf3)
#' on.exit(unlink(tf3))
#' write_dataset(airquality, tf3, partitioning = c("Month", "Day"), hive_style = FALSE)
#'
#' # View files - you can see the partitioning means that files have been written
#' # to folders based on Month/Day values
#' tf3_files <- list.files(tf3, recursive = TRUE)
#'
#' # With no partitioning specified, dataset contains all files but doesn't include
#' # directory names as field names
#' open_dataset(tf3)
#'
#' # Now that partitioning has been specified, your dataset contains columns for Month and Day
#' open_dataset(tf3, partitioning = c("Month", "Day"))
#'
#' # If you want to specify the data types for your fields, you can pass in a Schema
#' open_dataset(tf3, partitioning = schema(Month = int8(), Day = int8()))
open_dataset <- function(sources,
schema = NULL,
partitioning = hive_partition(),
hive_style = NA,
unify_schemas = NULL,
format = c("parquet", "arrow", "ipc", "feather", "csv", "tsv", "text", "json"),
factory_options = list(),
...) {
stop_if_no_datasets()
if (is_list_of(sources, "Dataset")) {
if (is.null(schema)) {
if (is.null(unify_schemas) || isTRUE(unify_schemas)) {
# Default is to unify schemas here
schema <- unify_schemas(schemas = map(sources, ~ .$schema))
} else {
# Take the first one.
schema <- sources[[1]]$schema
}
}
# Enforce that all datasets have the same schema
assert_is(schema, "Schema")
sources <- lapply(sources, function(x) {
x$WithSchema(schema)
})
return(dataset___UnionDataset__create(sources, schema))
}
if (is_false(hive_style) &&
inherits(partitioning, "PartitioningFactory") &&
identical(partitioning$type_name, "hive")) {
# Allow default partitioning arg to be overridden by hive_style = FALSE
partitioning <- NULL
}
factory <- DatasetFactory$create(
sources,
partitioning = partitioning,
format = format,
schema = schema,
hive_style = hive_style,
factory_options = factory_options,
...
)
tryCatch(
# Default is _not_ to inspect/unify schemas
factory$Finish(schema, isTRUE(unify_schemas)),
# n = 4 because we want the error to show up as being from open_dataset()
# and not augment_io_error_msg()
error = function(e, call = caller_env(n = 4)) {
augment_io_error_msg(e, call, format = format)
}
)
}
#' Open a multi-file dataset of CSV or other delimiter-separated format
#'
#' A wrapper around [open_dataset] which explicitly includes parameters mirroring [read_csv_arrow()],
#' [read_delim_arrow()], and [read_tsv_arrow()] to allow for easy switching between functions
#' for opening single files and functions for opening datasets.
#'
#' @inheritParams open_dataset
#' @inheritParams read_delim_arrow
#'
#' @section Options currently supported by [read_delim_arrow()] which are not supported here:
#' * `file` (instead, please specify files in `sources`)
#' * `col_select` (instead, subset columns after dataset creation)
#' * `as_data_frame` (instead, convert to data frame after dataset creation)
#' * `parse_options`
#'
#' @examplesIf arrow_with_dataset()
#' # Set up directory for examples
#' tf <- tempfile()
#' dir.create(tf)
#' df <- data.frame(x = c("1", "2", "NULL"))
#'
#' file_path <- file.path(tf, "file1.txt")
#' write.table(df, file_path, sep = ",", row.names = FALSE)
#'
#' read_csv_arrow(file_path, na = c("", "NA", "NULL"), col_names = "y", skip = 1)
#' open_csv_dataset(file_path, na = c("", "NA", "NULL"), col_names = "y", skip = 1)
#'
#' unlink(tf)
#' @seealso [open_dataset()]
#' @export
open_delim_dataset <- function(sources,
schema = NULL,
partitioning = hive_partition(),
hive_style = NA,
unify_schemas = NULL,
factory_options = list(),
delim = ",",
quote = "\"",
escape_double = TRUE,
escape_backslash = FALSE,
col_names = TRUE,
col_types = NULL,
na = c("", "NA"),
skip_empty_rows = TRUE,
skip = 0L,
convert_options = NULL,
read_options = NULL,
timestamp_parsers = NULL,
quoted_na = TRUE,
parse_options = NULL) {
open_dataset(
sources = sources,
schema = schema,
partitioning = partitioning,
hive_style = hive_style,
unify_schemas = unify_schemas,
factory_options = factory_options,
format = "text",
delim = delim,
quote = quote,
escape_double = escape_double,
escape_backslash = escape_backslash,
col_names = col_names,
col_types = col_types,
na = na,
skip_empty_rows = skip_empty_rows,
skip = skip,
convert_options = convert_options,
read_options = read_options,
timestamp_parsers = timestamp_parsers,
quoted_na = quoted_na,
parse_options = parse_options
)
}
#' @rdname open_delim_dataset
#' @export
open_csv_dataset <- function(sources,
schema = NULL,
partitioning = hive_partition(),
hive_style = NA,
unify_schemas = NULL,
factory_options = list(),
quote = "\"",
escape_double = TRUE,
escape_backslash = FALSE,
col_names = TRUE,
col_types = NULL,
na = c("", "NA"),
skip_empty_rows = TRUE,
skip = 0L,
convert_options = NULL,
read_options = NULL,
timestamp_parsers = NULL,
quoted_na = TRUE,
parse_options = NULL) {
mc <- match.call()
mc$delim <- ","
mc[[1]] <- get("open_delim_dataset", envir = asNamespace("arrow"))
eval.parent(mc)
}
#' @rdname open_delim_dataset
#' @export
open_tsv_dataset <- function(sources,
schema = NULL,
partitioning = hive_partition(),
hive_style = NA,
unify_schemas = NULL,
factory_options = list(),
quote = "\"",
escape_double = TRUE,
escape_backslash = FALSE,
col_names = TRUE,
col_types = NULL,
na = c("", "NA"),
skip_empty_rows = TRUE,
skip = 0L,
convert_options = NULL,
read_options = NULL,
timestamp_parsers = NULL,
quoted_na = TRUE,
parse_options = NULL) {
mc <- match.call()
mc$delim <- "\t"
mc[[1]] <- get("open_delim_dataset", envir = asNamespace("arrow"))
eval.parent(mc)
}
#' Multi-file datasets
#'
#' @description
#' Arrow Datasets allow you to query against data that has been split across
#' multiple files. This sharding of data may indicate partitioning, which
#' can accelerate queries that only touch some partitions (files).
#'
#' A `Dataset` contains one or more `Fragments`, such as files, of potentially
#' differing type and partitioning.
#'
#' For `Dataset$create()`, see [open_dataset()], which is an alias for it.
#'
#' `DatasetFactory` is used to provide finer control over the creation of `Dataset`s.
#'
#' @section Factory:
#' `DatasetFactory` is used to create a `Dataset`, inspect the [Schema] of the
#' fragments contained in it, and declare a partitioning.
#' `FileSystemDatasetFactory` is a subclass of `DatasetFactory` for
#' discovering files in the local file system, the only currently supported
#' file system.
#'
#' For the `DatasetFactory$create()` factory method, see [dataset_factory()], an
#' alias for it. A `DatasetFactory` has:
#'
#' - `$Inspect(unify_schemas)`: If `unify_schemas` is `TRUE`, all fragments
#' will be scanned and a unified [Schema] will be created from them; if `FALSE`
#' (default), only the first fragment will be inspected for its schema. Use this
#' fast path when you know and trust that all fragments have an identical schema.
#' - `$Finish(schema, unify_schemas)`: Returns a `Dataset`. If `schema` is provided,
#' it will be used for the `Dataset`; if omitted, a `Schema` will be created from
#' inspecting the fragments (files) in the dataset, following `unify_schemas`
#' as described above.
#'
#' `FileSystemDatasetFactory$create()` is a lower-level factory method and
#' takes the following arguments:
#' * `filesystem`: A [FileSystem]
#' * `selector`: Either a [FileSelector] or `NULL`
#' * `paths`: Either a character vector of file paths or `NULL`
#' * `format`: A [FileFormat]
#' * `partitioning`: Either `Partitioning`, `PartitioningFactory`, or `NULL`
#' @section Methods:
#'
#' A `Dataset` has the following methods:
#' - `$NewScan()`: Returns a [ScannerBuilder] for building a query
#' - `$WithSchema()`: Returns a new Dataset with the specified schema.
#' This method currently supports only adding, removing, or reordering
#' fields in the schema: you cannot alter or cast the field types.
#' - `$schema`: Active binding that returns the [Schema] of the Dataset; you
#' may also replace the dataset's schema by using `ds$schema <- new_schema`.
#'
#' `FileSystemDataset` has the following methods:
#' - `$files`: Active binding, returns the files of the `FileSystemDataset`
#' - `$format`: Active binding, returns the [FileFormat] of the `FileSystemDataset`
#'
#' `UnionDataset` has the following methods:
#' - `$children`: Active binding, returns all child `Dataset`s.
#'
#' @export
#' @seealso [open_dataset()] for a simple interface to creating a `Dataset`
Dataset <- R6Class("Dataset",
inherit = ArrowObject,
public = list(
# @description
# Start a new scan of the data
# @return A [ScannerBuilder]
NewScan = function() dataset___Dataset__NewScan(self),
ToString = function() self$schema$ToString(),
WithSchema = function(schema) {
assert_is(schema, "Schema")
dataset___Dataset__ReplaceSchema(self, schema)
}
),
active = list(
schema = function(schema) {
if (missing(schema)) {
dataset___Dataset__schema(self)
} else {
out <- self$WithSchema(schema)
# WithSchema returns a new object but we're modifying in place,
# so swap in that new C++ object pointer into our R6 object
self$set_pointer(out$pointer())
self
}
},
metadata = function() self$schema$metadata,
num_rows = function() self$NewScan()$Finish()$CountRows(),
num_cols = function() length(self$schema),
# @description
# Return the Dataset's type.
type = function() dataset___Dataset__type_name(self)
)
)
Dataset$create <- open_dataset
#' @name FileSystemDataset
#' @rdname Dataset
#' @export
FileSystemDataset <- R6Class("FileSystemDataset",
inherit = Dataset,
public = list(
.class_title = function() {
nfiles <- length(self$files)
file_type <- self$format$type
pretty_file_type <- list(
parquet = "Parquet",
ipc = "Feather"
)[[file_type]]
paste(
class(self)[[1]],
"with",
nfiles,
pretty_file_type %||% file_type,
ifelse(nfiles == 1, "file", "files")
)
}
),
active = list(
# @description
# Return the files contained in this `FileSystemDataset`
files = function() dataset___FileSystemDataset__files(self),
# @description
# Return the format of files in this `Dataset`
format = function() {
dataset___FileSystemDataset__format(self)
},
# @description
# Return the filesystem of files in this `Dataset`
filesystem = function() {
dataset___FileSystemDataset__filesystem(self)
}
)
)
#' @name UnionDataset
#' @rdname Dataset
#' @export
UnionDataset <- R6Class("UnionDataset",
inherit = Dataset,
active = list(
# @description
# Return the UnionDataset's child `Dataset`s
children = function() {
dataset___UnionDataset__children(self)
}
)
)
#' @name InMemoryDataset
#' @rdname Dataset
#' @export
InMemoryDataset <- R6Class("InMemoryDataset", inherit = Dataset)
InMemoryDataset$create <- function(x) {
stop_if_no_datasets()
if (!inherits(x, "Table")) {
x <- Table$create(x)
}
dataset___InMemoryDataset__create(x)
}
#' @export
names.Dataset <- function(x) names(x$schema)
#' @export
dim.Dataset <- function(x) c(x$num_rows, x$num_cols)
#' @export
c.Dataset <- function(...) Dataset$create(list(...))
#' @export
as.data.frame.Dataset <- function(x, row.names = NULL, optional = FALSE, ...) {
collect.Dataset(x)
}
#' @export
head.Dataset <- function(x, n = 6L, ...) {
head(Scanner$create(x), n)
}
#' @export
tail.Dataset <- function(x, n = 6L, ...) {
tail(Scanner$create(x), n)
}
#' @export
`[.Dataset` <- function(x, i, j, ..., drop = FALSE) {
if (nargs() == 2L) {
# List-like column extraction (x[i])
return(x[, i])
}
if (!missing(j)) {
x <- select.Dataset(x, all_of(j))
}
if (!missing(i)) {
x <- take_dataset_rows(x, i)
}
x
}
take_dataset_rows <- function(x, i) {
if (!is.numeric(i) || any(i < 0)) {
stop("Only slicing with positive indices is supported", call. = FALSE)
}
scanner <- Scanner$create(x)
i <- Array$create(i - 1)
dataset___Scanner__TakeRows(scanner, i)
}
stop_if_no_datasets <- function() {
if (!arrow_with_dataset()) {
stop("This build of the arrow package does not support Datasets", call. = FALSE)
}
}