-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
apiclient.py
1288 lines (1137 loc) · 53.1 KB
/
apiclient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
""" For internal use only. No backwards compatibility guarantees.
Dataflow client utility functions."""
# pytype: skip-file
# To regenerate the client:
# pip install google-apitools[cli]
# gen_client --discovery_url=cloudbuild.v1 --overwrite \
# --outdir=apache_beam/runners/dataflow/internal/clients/cloudbuild \
# --root_package=. client
import ast
import codecs
from functools import partial
import getpass
import hashlib
import io
import json
import logging
import os
import random
import string
from packaging import version
import re
import sys
import time
import warnings
from copy import copy
from datetime import datetime
from apitools.base.py import encoding
from apitools.base.py import exceptions
from apache_beam import version as beam_version
from apache_beam.internal.gcp.auth import get_service_credentials
from apache_beam.internal.gcp.json_value import to_json_value
from apache_beam.internal.http_client import get_new_http
from apache_beam.io.filesystems import FileSystems
from apache_beam.io.gcp.gcsfilesystem import GCSFileSystem
from apache_beam.io.gcp.gcsio import create_storage_client
from apache_beam.options.pipeline_options import DebugOptions
from apache_beam.options.pipeline_options import GoogleCloudOptions
from apache_beam.options.pipeline_options import StandardOptions
from apache_beam.options.pipeline_options import WorkerOptions
from apache_beam.portability import common_urns
from apache_beam.portability.api import beam_runner_api_pb2
from apache_beam.runners.common import validate_pipeline_graph
from apache_beam.runners.dataflow.internal import names
from apache_beam.runners.dataflow.internal.clients import dataflow
from apache_beam.runners.internal import names as shared_names
from apache_beam.runners.portability.stager import Stager
from apache_beam.transforms import DataflowDistributionCounter
from apache_beam.transforms import cy_combiners
from apache_beam.transforms.display import DisplayData
from apache_beam.transforms.environments import is_apache_beam_container
from apache_beam.utils import retry
from apache_beam.utils import proto_utils
# Environment version information. It is passed to the service during a
# a job submission and is used by the service to establish what features
# are expected by the workers.
_LEGACY_ENVIRONMENT_MAJOR_VERSION = '8'
_FNAPI_ENVIRONMENT_MAJOR_VERSION = '8'
_LOGGER = logging.getLogger(__name__)
_PYTHON_VERSIONS_SUPPORTED_BY_DATAFLOW = ['3.8', '3.9', '3.10', '3.11', '3.12']
class Environment(object):
"""Wrapper for a dataflow Environment protobuf."""
def __init__(
self,
packages,
options,
environment_version,
proto_pipeline_staged_url,
proto_pipeline=None):
self.standard_options = options.view_as(StandardOptions)
self.google_cloud_options = options.view_as(GoogleCloudOptions)
self.worker_options = options.view_as(WorkerOptions)
self.debug_options = options.view_as(DebugOptions)
self.pipeline_url = proto_pipeline_staged_url
self.proto = dataflow.Environment()
self.proto.clusterManagerApiService = GoogleCloudOptions.COMPUTE_API_SERVICE
self.proto.dataset = '{}/cloud_dataflow'.format(
GoogleCloudOptions.BIGQUERY_API_SERVICE)
self.proto.tempStoragePrefix = (
self.google_cloud_options.temp_location.replace(
'gs:/', GoogleCloudOptions.STORAGE_API_SERVICE))
if self.worker_options.worker_region:
self.proto.workerRegion = self.worker_options.worker_region
if self.worker_options.worker_zone:
self.proto.workerZone = self.worker_options.worker_zone
# User agent information.
self.proto.userAgent = dataflow.Environment.UserAgentValue()
self.local = 'localhost' in self.google_cloud_options.dataflow_endpoint
self._proto_pipeline = proto_pipeline
if self.google_cloud_options.service_account_email:
self.proto.serviceAccountEmail = (
self.google_cloud_options.service_account_email)
if self.google_cloud_options.dataflow_kms_key:
self.proto.serviceKmsKeyName = self.google_cloud_options.dataflow_kms_key
self.proto.userAgent.additionalProperties.extend([
dataflow.Environment.UserAgentValue.AdditionalProperty(
key='name', value=to_json_value(self._get_python_sdk_name())),
dataflow.Environment.UserAgentValue.AdditionalProperty(
key='version', value=to_json_value(beam_version.__version__))
])
# Version information.
self.proto.version = dataflow.Environment.VersionValue()
_verify_interpreter_version_is_supported(options)
if self.standard_options.streaming:
job_type = 'FNAPI_STREAMING'
else:
job_type = 'FNAPI_BATCH'
self.proto.version.additionalProperties.extend([
dataflow.Environment.VersionValue.AdditionalProperty(
key='job_type', value=to_json_value(job_type)),
dataflow.Environment.VersionValue.AdditionalProperty(
key='major', value=to_json_value(environment_version))
])
# TODO: Use enumerated type instead of strings for job types.
if job_type.startswith('FNAPI_'):
self.debug_options.experiments = self.debug_options.experiments or []
debug_options_experiments = self.debug_options.experiments
# Add use_multiple_sdk_containers flag if it's not already present. Do not
# add the flag if 'no_use_multiple_sdk_containers' is present.
# TODO: Cleanup use_multiple_sdk_containers once we deprecate Python SDK
# till version 2.4.
if ('use_multiple_sdk_containers' not in debug_options_experiments and
'no_use_multiple_sdk_containers' not in debug_options_experiments):
debug_options_experiments.append('use_multiple_sdk_containers')
# FlexRS
if self.google_cloud_options.flexrs_goal == 'COST_OPTIMIZED':
self.proto.flexResourceSchedulingGoal = (
dataflow.Environment.FlexResourceSchedulingGoalValueValuesEnum.
FLEXRS_COST_OPTIMIZED)
elif self.google_cloud_options.flexrs_goal == 'SPEED_OPTIMIZED':
self.proto.flexResourceSchedulingGoal = (
dataflow.Environment.FlexResourceSchedulingGoalValueValuesEnum.
FLEXRS_SPEED_OPTIMIZED)
# Experiments
if self.debug_options.experiments:
for experiment in self.debug_options.experiments:
self.proto.experiments.append(experiment)
# Worker pool(s) information.
package_descriptors = []
for package in packages:
package_descriptors.append(
dataflow.Package(
location='%s/%s' % (
self.google_cloud_options.staging_location.replace(
'gs:/', GoogleCloudOptions.STORAGE_API_SERVICE),
package),
name=package))
pool = dataflow.WorkerPool(
kind='local' if self.local else 'harness',
packages=package_descriptors,
taskrunnerSettings=dataflow.TaskRunnerSettings(
parallelWorkerSettings=dataflow.WorkerSettings(
baseUrl=GoogleCloudOptions.DATAFLOW_ENDPOINT,
servicePath=self.google_cloud_options.dataflow_endpoint)))
pool.autoscalingSettings = dataflow.AutoscalingSettings()
# Set worker pool options received through command line.
if self.worker_options.num_workers:
pool.numWorkers = self.worker_options.num_workers
if self.worker_options.max_num_workers:
pool.autoscalingSettings.maxNumWorkers = (
self.worker_options.max_num_workers)
if self.worker_options.autoscaling_algorithm:
values_enum = dataflow.AutoscalingSettings.AlgorithmValueValuesEnum
pool.autoscalingSettings.algorithm = {
'NONE': values_enum.AUTOSCALING_ALGORITHM_NONE,
'THROUGHPUT_BASED': values_enum.AUTOSCALING_ALGORITHM_BASIC,
}.get(self.worker_options.autoscaling_algorithm)
if self.worker_options.machine_type:
pool.machineType = self.worker_options.machine_type
if self.worker_options.disk_size_gb:
pool.diskSizeGb = self.worker_options.disk_size_gb
if self.worker_options.disk_type:
pool.diskType = self.worker_options.disk_type
if self.worker_options.zone:
pool.zone = self.worker_options.zone
if self.worker_options.network:
pool.network = self.worker_options.network
if self.worker_options.subnetwork:
pool.subnetwork = self.worker_options.subnetwork
# Setting worker pool sdk_harness_container_images option for supported
# Dataflow workers.
environments_to_use = self._get_environments_from_tranforms()
# Adding container images for other SDKs that may be needed for
# cross-language pipelines.
for id, environment in environments_to_use:
if environment.urn != common_urns.environments.DOCKER.urn:
raise Exception(
'Dataflow can only execute pipeline steps in Docker environments.'
' Received %r.' % environment)
environment_payload = proto_utils.parse_Bytes(
environment.payload, beam_runner_api_pb2.DockerPayload)
container_image_url = environment_payload.container_image
container_image = dataflow.SdkHarnessContainerImage()
container_image.containerImage = container_image_url
container_image.useSingleCorePerContainer = (
common_urns.protocols.MULTI_CORE_BUNDLE_PROCESSING.urn not in
environment.capabilities)
container_image.environmentId = id
for capability in environment.capabilities:
container_image.capabilities.append(capability)
pool.sdkHarnessContainerImages.append(container_image)
if not pool.sdkHarnessContainerImages:
pool.workerHarnessContainerImage = (
get_container_image_from_options(options))
elif len(pool.sdkHarnessContainerImages) == 1:
# Dataflow expects a value here when there is only one environment.
pool.workerHarnessContainerImage = (
pool.sdkHarnessContainerImages[0].containerImage)
if self.debug_options.number_of_worker_harness_threads:
pool.numThreadsPerWorker = (
self.debug_options.number_of_worker_harness_threads)
if self.worker_options.use_public_ips is not None:
if self.worker_options.use_public_ips:
pool.ipConfiguration = (
dataflow.WorkerPool.IpConfigurationValueValuesEnum.WORKER_IP_PUBLIC)
else:
pool.ipConfiguration = (
dataflow.WorkerPool.IpConfigurationValueValuesEnum.WORKER_IP_PRIVATE
)
if self.standard_options.streaming:
# Use separate data disk for streaming.
disk = dataflow.Disk()
if self.local:
disk.diskType = 'local'
if self.worker_options.disk_type:
disk.diskType = self.worker_options.disk_type
pool.dataDisks.append(disk)
self.proto.workerPools.append(pool)
sdk_pipeline_options = options.get_all_options(retain_unknown_options=True)
if sdk_pipeline_options:
self.proto.sdkPipelineOptions = (
dataflow.Environment.SdkPipelineOptionsValue())
options_dict = {
k: v
for k, v in sdk_pipeline_options.items() if v is not None
}
options_dict["pipelineUrl"] = proto_pipeline_staged_url
# Don't pass impersonate_service_account through to the harness.
# Though impersonation should start a job, the workers should
# not try to modify their credentials.
options_dict.pop('impersonate_service_account', None)
self.proto.sdkPipelineOptions.additionalProperties.append(
dataflow.Environment.SdkPipelineOptionsValue.AdditionalProperty(
key='options', value=to_json_value(options_dict)))
dd = DisplayData.create_from_options(options)
items = [item.get_dict() for item in dd.items]
self.proto.sdkPipelineOptions.additionalProperties.append(
dataflow.Environment.SdkPipelineOptionsValue.AdditionalProperty(
key='display_data', value=to_json_value(items)))
if self.google_cloud_options.dataflow_service_options:
for option in self.google_cloud_options.dataflow_service_options:
self.proto.serviceOptions.append(option)
if self.google_cloud_options.enable_hot_key_logging:
self.proto.debugOptions = dataflow.DebugOptions(enableHotKeyLogging=True)
def _get_environments_from_tranforms(self):
if not self._proto_pipeline:
return []
environment_ids = set(
transform.environment_id
for transform in self._proto_pipeline.components.transforms.values()
if transform.environment_id)
return [(id, self._proto_pipeline.components.environments[id])
for id in environment_ids]
def _get_python_sdk_name(self):
python_version = '%d.%d' % (sys.version_info[0], sys.version_info[1])
return 'Apache Beam Python %s SDK' % python_version
class Job(object):
"""Wrapper for a dataflow Job protobuf."""
def __str__(self):
def encode_shortstrings(input_buffer, errors='strict'):
"""Encoder (from Unicode) that suppresses long base64 strings."""
original_len = len(input_buffer)
if original_len > 150:
if self.base64_str_re.match(input_buffer):
input_buffer = '<string of %d bytes>' % original_len
input_buffer = input_buffer.encode('ascii', errors=errors)
else:
matched = self.coder_str_re.match(input_buffer)
if matched:
input_buffer = '%s<string of %d bytes>' % (
matched.group(1), matched.end(2) - matched.start(2))
input_buffer = input_buffer.encode('ascii', errors=errors)
return input_buffer, original_len
def decode_shortstrings(input_buffer, errors='strict'):
"""Decoder (to Unicode) that suppresses long base64 strings."""
shortened, length = encode_shortstrings(input_buffer, errors)
return str(shortened), length
def shortstrings_registerer(encoding_name):
if encoding_name == 'shortstrings':
return codecs.CodecInfo(
name='shortstrings',
encode=encode_shortstrings,
decode=decode_shortstrings)
return None
codecs.register(shortstrings_registerer)
# Use json "dump string" method to get readable formatting;
# further modify it to not output too-long strings, aimed at the
# 10,000+ character hex-encoded "serialized_fn" values.
return json.dumps(
json.loads(encoding.MessageToJson(self.proto)),
indent=2,
sort_keys=True)
@staticmethod
def _build_default_job_name(user_name):
"""Generates a default name for a job.
user_name is lowercased, and any characters outside of [-a-z0-9]
are removed. If necessary, the user_name is truncated to shorten
the job name to 63 characters."""
user_name = re.sub('[^-a-z0-9]', '', user_name.lower())
date_component = datetime.utcnow().strftime('%m%d%H%M%S-%f')
app_user_name = 'beamapp-{}'.format(user_name)
# append 8 random alphanumeric characters to avoid collisions.
random_component = ''.join(
random.choices(string.ascii_lowercase + string.digits, k=8))
job_name = '{}-{}-{}'.format(
app_user_name, date_component, random_component)
if len(job_name) > 63:
job_name = '{}-{}-{}'.format(
app_user_name[:-(len(job_name) - 63)],
date_component,
random_component)
return job_name
@staticmethod
def default_job_name(job_name):
if job_name is None:
job_name = Job._build_default_job_name(getpass.getuser())
return job_name
def __init__(self, options, proto_pipeline):
self.options = options
validate_pipeline_graph(proto_pipeline)
self.proto_pipeline = proto_pipeline
self.google_cloud_options = options.view_as(GoogleCloudOptions)
if not self.google_cloud_options.job_name:
self.google_cloud_options.job_name = self.default_job_name(
self.google_cloud_options.job_name)
required_google_cloud_options = ['project', 'job_name', 'temp_location']
missing = [
option for option in required_google_cloud_options
if not getattr(self.google_cloud_options, option)
]
if missing:
raise ValueError(
'Missing required configuration parameters: %s' % missing)
if not self.google_cloud_options.staging_location:
_LOGGER.info(
'Defaulting to the temp_location as staging_location: %s',
self.google_cloud_options.temp_location)
(
self.google_cloud_options.staging_location
) = self.google_cloud_options.temp_location
self.root_staging_location = self.google_cloud_options.staging_location
# Make the staging and temp locations job name and time specific. This is
# needed to avoid clashes between job submissions using the same staging
# area or team members using same job names. This method is not entirely
# foolproof since two job submissions with same name can happen at exactly
# the same time. However the window is extremely small given that
# time.time() has at least microseconds granularity. We add the suffix only
# for GCS staging locations where the potential for such clashes is high.
if self.google_cloud_options.staging_location.startswith('gs://'):
path_suffix = '%s.%f' % (self.google_cloud_options.job_name, time.time())
self.google_cloud_options.staging_location = FileSystems.join(
self.google_cloud_options.staging_location, path_suffix)
self.google_cloud_options.temp_location = FileSystems.join(
self.google_cloud_options.temp_location, path_suffix)
self.proto = dataflow.Job(name=self.google_cloud_options.job_name)
if self.options.view_as(StandardOptions).streaming:
self.proto.type = dataflow.Job.TypeValueValuesEnum.JOB_TYPE_STREAMING
else:
self.proto.type = dataflow.Job.TypeValueValuesEnum.JOB_TYPE_BATCH
if self.google_cloud_options.update:
self.proto.replaceJobId = self.job_id_for_name(self.proto.name)
if self.google_cloud_options.transform_name_mapping:
self.proto.transformNameMapping = (
dataflow.Job.TransformNameMappingValue())
for _, (key, value) in enumerate(
self.google_cloud_options.transform_name_mapping.items()):
self.proto.transformNameMapping.additionalProperties.append(
dataflow.Job.TransformNameMappingValue.AdditionalProperty(
key=key, value=value))
if self.google_cloud_options.create_from_snapshot:
self.proto.createdFromSnapshotId = (
self.google_cloud_options.create_from_snapshot)
# Labels.
if self.google_cloud_options.labels:
self.proto.labels = dataflow.Job.LabelsValue()
labels = self.google_cloud_options.labels
for label in labels:
if '{' in label:
label = ast.literal_eval(label)
for key, value in label.items():
self.proto.labels.additionalProperties.append(
dataflow.Job.LabelsValue.AdditionalProperty(
key=key, value=value))
else:
parts = label.split('=', 1)
key = parts[0]
value = parts[1] if len(parts) > 1 else ''
self.proto.labels.additionalProperties.append(
dataflow.Job.LabelsValue.AdditionalProperty(key=key, value=value))
# Client Request ID
self.proto.clientRequestId = '{}-{}'.format(
datetime.utcnow().strftime('%Y%m%d%H%M%S%f'),
random.randrange(9000) + 1000)
self.base64_str_re = re.compile(r'^[A-Za-z0-9+/]*=*$')
self.coder_str_re = re.compile(r'^([A-Za-z]+\$)([A-Za-z0-9+/]*=*)$')
def job_id_for_name(self, job_name):
return DataflowApplicationClient(
self.google_cloud_options).job_id_for_name(job_name)
def json(self):
return encoding.MessageToJson(self.proto)
def __reduce__(self):
"""Reduce hook for pickling the Job class more easily."""
return (Job, (self.options, ))
class DataflowApplicationClient(object):
_HASH_CHUNK_SIZE = 1024 * 8
_GCS_CACHE_PREFIX = "artifact_cache"
"""A Dataflow API client used by application code to create and query jobs."""
def __init__(self, options, root_staging_location=None):
"""Initializes a Dataflow API client object."""
self.standard_options = options.view_as(StandardOptions)
self.google_cloud_options = options.view_as(GoogleCloudOptions)
self._enable_caching = self.google_cloud_options.enable_artifact_caching
self._enable_bucket_read_metric_counter = \
self.google_cloud_options.enable_bucket_read_metric_counter
self._enable_bucket_write_metric_counter =\
self.google_cloud_options.enable_bucket_write_metric_counter
self._root_staging_location = (
root_staging_location or self.google_cloud_options.staging_location)
self.environment_version = _FNAPI_ENVIRONMENT_MAJOR_VERSION
if self.google_cloud_options.no_auth:
credentials = None
else:
credentials = get_service_credentials(options)
http_client = get_new_http()
self._client = dataflow.DataflowV1b3(
url=self.google_cloud_options.dataflow_endpoint,
credentials=credentials,
get_credentials=(not self.google_cloud_options.no_auth),
http=http_client,
response_encoding=get_response_encoding())
self._storage_client = create_storage_client(
options, not self.google_cloud_options.no_auth)
self._sdk_image_overrides = self._get_sdk_image_overrides(options)
def _get_sdk_image_overrides(self, pipeline_options):
worker_options = pipeline_options.view_as(WorkerOptions)
sdk_overrides = worker_options.sdk_harness_container_image_overrides
return (
dict(s.split(',', 1) for s in sdk_overrides) if sdk_overrides else {})
@staticmethod
def _compute_sha256(file):
hasher = hashlib.sha256()
with open(file, 'rb') as f:
for chunk in iter(partial(f.read,
DataflowApplicationClient._HASH_CHUNK_SIZE),
b""):
hasher.update(chunk)
return hasher.hexdigest()
def _cached_location(self, sha256):
sha_prefix = sha256[0:2]
return FileSystems.join(
self._root_staging_location,
DataflowApplicationClient._GCS_CACHE_PREFIX,
sha_prefix,
sha256)
def _gcs_file_copy(self, from_path, to_path, sha256):
if self._enable_caching and sha256:
self._cached_gcs_file_copy(from_path, to_path, sha256)
else:
self._uncached_gcs_file_copy(from_path, to_path)
def _cached_gcs_file_copy(self, from_path, to_path, sha256):
cached_path = self._cached_location(sha256)
if FileSystems.exists(cached_path):
_LOGGER.info(
'Skipping upload of %s because it already exists at %s',
to_path,
cached_path)
else:
self._uncached_gcs_file_copy(from_path, cached_path)
FileSystems.copy(
source_file_names=[cached_path], destination_file_names=[to_path])
_LOGGER.info('Copied cached artifact from %s to %s', from_path, to_path)
@retry.with_exponential_backoff(
retry_filter=retry.retry_on_server_errors_and_timeout_filter)
def _uncached_gcs_file_copy(self, from_path, to_path):
to_folder, to_name = os.path.split(to_path)
total_size = os.path.getsize(from_path)
with open(from_path, 'rb') as f:
self.stage_file(to_folder, to_name, f, total_size=total_size)
def _stage_resources(self, pipeline, options):
google_cloud_options = options.view_as(GoogleCloudOptions)
if google_cloud_options.staging_location is None:
raise RuntimeError('The --staging_location option must be specified.')
if google_cloud_options.temp_location is None:
raise RuntimeError('The --temp_location option must be specified.')
resources = []
staged_paths = {}
staged_hashes = {}
for _, env in sorted(pipeline.components.environments.items(),
key=lambda kv: kv[0]):
for dep in env.dependencies:
if dep.type_urn != common_urns.artifact_types.FILE.urn:
raise RuntimeError('unsupported artifact type %s' % dep.type_urn)
type_payload = beam_runner_api_pb2.ArtifactFilePayload.FromString(
dep.type_payload)
if dep.role_urn == common_urns.artifact_roles.STAGING_TO.urn:
remote_name = (
beam_runner_api_pb2.ArtifactStagingToRolePayload.FromString(
dep.role_payload)).staged_name
is_staged_role = True
else:
remote_name = os.path.basename(type_payload.path)
is_staged_role = False
if self._enable_caching and not type_payload.sha256:
type_payload.sha256 = self._compute_sha256(type_payload.path)
if type_payload.sha256 and type_payload.sha256 in staged_hashes:
_LOGGER.info(
'Found duplicated artifact sha256: %s (%s)',
type_payload.path,
type_payload.sha256)
remote_name = staged_hashes[type_payload.sha256]
if is_staged_role:
# We should not be overriding this, as dep.role_payload.staged_name
# refers to the desired name on the worker, whereas staged_name
# refers to its placement in a distributed filesystem.
# TODO(heejong): Clean this up.
dep.role_payload = beam_runner_api_pb2.ArtifactStagingToRolePayload(
staged_name=remote_name).SerializeToString()
elif type_payload.path and type_payload.path in staged_paths:
_LOGGER.info(
'Found duplicated artifact path: %s (%s)',
type_payload.path,
type_payload.sha256)
remote_name = staged_paths[type_payload.path]
if is_staged_role:
# We should not be overriding this, as dep.role_payload.staged_name
# refers to the desired name on the worker, whereas staged_name
# refers to its placement in a distributed filesystem.
# TODO(heejong): Clean this up.
dep.role_payload = beam_runner_api_pb2.ArtifactStagingToRolePayload(
staged_name=remote_name).SerializeToString()
else:
resources.append(
(type_payload.path, remote_name, type_payload.sha256))
staged_paths[type_payload.path] = remote_name
staged_hashes[type_payload.sha256] = remote_name
if FileSystems.get_scheme(
google_cloud_options.staging_location) == GCSFileSystem.scheme():
dep.type_urn = common_urns.artifact_types.URL.urn
dep.type_payload = beam_runner_api_pb2.ArtifactUrlPayload(
url=FileSystems.join(
google_cloud_options.staging_location, remote_name),
sha256=type_payload.sha256).SerializeToString()
else:
dep.type_payload = beam_runner_api_pb2.ArtifactFilePayload(
path=FileSystems.join(
google_cloud_options.staging_location, remote_name),
sha256=type_payload.sha256).SerializeToString()
resource_stager = _LegacyDataflowStager(self)
staged_resources = resource_stager.stage_job_resources(
resources, staging_location=google_cloud_options.staging_location)
return staged_resources
def stage_file(
self,
gcs_or_local_path,
file_name,
stream,
mime_type='application/octet-stream',
total_size=None):
"""Stages a file at a GCS or local path with stream-supplied contents."""
from google.cloud.exceptions import Forbidden
from google.cloud.exceptions import NotFound
if not gcs_or_local_path.startswith('gs://'):
local_path = FileSystems.join(gcs_or_local_path, file_name)
_LOGGER.info('Staging file locally to %s', local_path)
with open(local_path, 'wb') as f:
f.write(stream.read())
return
gcs_location = FileSystems.join(gcs_or_local_path, file_name)
bucket_name, blob_name = gcs_location[5:].split('/', 1)
start_time = time.time()
_LOGGER.info('Starting GCS upload to %s...', gcs_location)
try:
from google.cloud.storage import Blob
from google.cloud.storage.fileio import BlobWriter
bucket = self._storage_client.get_bucket(bucket_name)
blob = bucket.get_blob(blob_name)
if not blob:
blob = Blob(blob_name, bucket)
with BlobWriter(blob) as f:
f.write(stream.read())
_LOGGER.info(
'Completed GCS upload to %s in %s seconds.',
gcs_location,
int(time.time() - start_time))
return
except Exception as e:
reportable_errors = [
Forbidden,
NotFound,
]
if type(e) in reportable_errors:
raise IOError((
'Could not upload to GCS path %s: %s. Please verify '
'that credentials are valid, that the specified path '
'exists, and that you have write access to it.') %
(gcs_or_local_path, e))
raise
@retry.no_retries # Using no_retries marks this as an integration point.
def create_job(self, job):
"""Creates job description. May stage and/or submit for remote execution."""
self.create_job_description(job)
# Stage and submit the job when necessary
dataflow_job_file = job.options.view_as(DebugOptions).dataflow_job_file
template_location = (
job.options.view_as(GoogleCloudOptions).template_location)
if job.options.view_as(DebugOptions).lookup_experiment('upload_graph'):
self.stage_file(
job.options.view_as(GoogleCloudOptions).staging_location,
"dataflow_graph.json",
io.BytesIO(job.json().encode('utf-8')))
del job.proto.steps[:]
job.proto.stepsLocation = FileSystems.join(
job.options.view_as(GoogleCloudOptions).staging_location,
"dataflow_graph.json")
# template file generation should be placed immediately before the
# conditional API call.
job_location = template_location or dataflow_job_file
if job_location:
gcs_or_local_path = os.path.dirname(job_location)
file_name = os.path.basename(job_location)
self.stage_file(
gcs_or_local_path, file_name, io.BytesIO(job.json().encode('utf-8')))
if not template_location:
return self.submit_job_description(job)
_LOGGER.info(
'A template was just created at location %s', template_location)
return None
@staticmethod
def _update_container_image_for_dataflow(beam_container_image_url):
# By default Dataflow pipelines use containers hosted in Dataflow GCR
# instead of Docker Hub.
image_suffix = beam_container_image_url.rsplit('/', 1)[1]
return names.DATAFLOW_CONTAINER_IMAGE_REPOSITORY + '/' + image_suffix
@staticmethod
def _apply_sdk_environment_overrides(
proto_pipeline, sdk_overrides, pipeline_options):
# Updates container image URLs for Dataflow.
# For a given container image URL
# * If a matching override has been provided that will be used.
# * For improved performance, External Apache Beam container images that are
# not explicitly overridden will be
# updated to use GCR copies instead of directly downloading from the
# Docker Hub.
current_sdk_container_image = get_container_image_from_options(
pipeline_options)
for environment in proto_pipeline.components.environments.values():
docker_payload = proto_utils.parse_Bytes(
environment.payload, beam_runner_api_pb2.DockerPayload)
overridden = False
new_container_image = docker_payload.container_image
for pattern, override in sdk_overrides.items():
new_container_image = re.sub(pattern, override, new_container_image)
if new_container_image != docker_payload.container_image:
overridden = True
# Container of the current (Python) SDK is overridden separately, hence
# not updated here.
if (is_apache_beam_container(new_container_image) and not overridden and
new_container_image != current_sdk_container_image):
new_container_image = (
DataflowApplicationClient._update_container_image_for_dataflow(
docker_payload.container_image))
if not new_container_image:
raise ValueError(
'SDK Docker container image has to be a non-empty string')
new_payload = copy(docker_payload)
new_payload.container_image = new_container_image
environment.payload = new_payload.SerializeToString()
def create_job_description(self, job):
"""Creates a job described by the workflow proto."""
DataflowApplicationClient._apply_sdk_environment_overrides(
job.proto_pipeline, self._sdk_image_overrides, job.options)
# Stage other resources for the SDK harness
resources = self._stage_resources(job.proto_pipeline, job.options)
# Stage proto pipeline.
self.stage_file(
job.google_cloud_options.staging_location,
shared_names.STAGED_PIPELINE_FILENAME,
io.BytesIO(job.proto_pipeline.SerializeToString()))
job.proto.environment = Environment(
proto_pipeline_staged_url=FileSystems.join(
job.google_cloud_options.staging_location,
shared_names.STAGED_PIPELINE_FILENAME),
packages=resources,
options=job.options,
environment_version=self.environment_version,
proto_pipeline=job.proto_pipeline).proto
_LOGGER.debug('JOB: %s', job)
@retry.with_exponential_backoff(num_retries=3, initial_delay_secs=3)
def get_job_metrics(self, job_id):
request = dataflow.DataflowProjectsLocationsJobsGetMetricsRequest()
request.jobId = job_id
request.location = self.google_cloud_options.region
request.projectId = self.google_cloud_options.project
try:
response = self._client.projects_locations_jobs.GetMetrics(request)
except exceptions.BadStatusCodeError as e:
_LOGGER.error(
'HTTP status %d. Unable to query metrics', e.response.status)
raise
return response
@retry.with_exponential_backoff(num_retries=3)
def submit_job_description(self, job):
"""Creates and excutes a job request."""
request = dataflow.DataflowProjectsLocationsJobsCreateRequest()
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
request.job = job.proto
try:
response = self._client.projects_locations_jobs.Create(request)
except exceptions.BadStatusCodeError as e:
_LOGGER.error(
'HTTP status %d trying to create job'
' at dataflow service endpoint %s',
e.response.status,
self.google_cloud_options.dataflow_endpoint)
_LOGGER.fatal('details of server error: %s', e)
raise
if response.clientRequestId and \
response.clientRequestId != job.proto.clientRequestId:
if self.google_cloud_options.update:
raise DataflowJobAlreadyExistsError(
"The job named %s with id: %s has already been updated into job "
"id: %s and cannot be updated again." %
(response.name, job.proto.replaceJobId, response.id))
else:
raise DataflowJobAlreadyExistsError(
'There is already active job named %s with id: %s. If you want to '
'submit a second job, try again by setting a different name using '
'--job_name.' % (response.name, response.id))
_LOGGER.info('Create job: %s', response)
# The response is a Job proto with the id for the new job.
_LOGGER.info('Created job with id: [%s]', response.id)
_LOGGER.info('Submitted job: %s', response.id)
_LOGGER.info(
'To access the Dataflow monitoring console, please navigate to '
'https://console.cloud.google.com/dataflow/jobs/%s/%s?project=%s',
self.google_cloud_options.region,
response.id,
self.google_cloud_options.project)
return response
@retry.with_exponential_backoff() # Using retry defaults from utils/retry.py
def modify_job_state(self, job_id, new_state):
"""Modify the run state of the job.
Args:
job_id: The id of the job.
new_state: A string representing the new desired state. It could be set to
either 'JOB_STATE_DONE', 'JOB_STATE_CANCELLED' or 'JOB_STATE_DRAINING'.
Returns:
True if the job was modified successfully.
"""
if new_state == 'JOB_STATE_DONE':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_DONE
elif new_state == 'JOB_STATE_CANCELLED':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_CANCELLED
elif new_state == 'JOB_STATE_DRAINING':
new_state = dataflow.Job.RequestedStateValueValuesEnum.JOB_STATE_DRAINING
else:
# Other states could only be set by the service.
return False
request = dataflow.DataflowProjectsLocationsJobsUpdateRequest()
request.jobId = job_id
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
request.job = dataflow.Job(requestedState=new_state)
self._client.projects_locations_jobs.Update(request)
return True
@retry.with_exponential_backoff(
retry_filter=retry.retry_on_server_errors_and_notfound_filter)
def get_job(self, job_id):
"""Gets the job status for a submitted job.
Args:
job_id: A string representing the job_id for the workflow as returned
by the create_job() request.
Returns:
A Job proto. See below for interesting fields.
The Job proto returned from a get_job() request contains some interesting
fields:
currentState: An object representing the current state of the job. The
string representation of the object (str() result) has the following
possible values: JOB_STATE_UNKNONW, JOB_STATE_STOPPED,
JOB_STATE_RUNNING, JOB_STATE_DONE, JOB_STATE_FAILED,
JOB_STATE_CANCELLED.
createTime: UTC time when the job was created
(e.g. '2015-03-10T00:01:53.074Z')
currentStateTime: UTC time for the current state of the job.
"""
request = dataflow.DataflowProjectsLocationsJobsGetRequest()
request.jobId = job_id
request.projectId = self.google_cloud_options.project
request.location = self.google_cloud_options.region
response = self._client.projects_locations_jobs.Get(request)
return response
@retry.with_exponential_backoff(
retry_filter=retry.retry_on_server_errors_and_notfound_filter)
def list_messages(
self,
job_id,
start_time=None,
end_time=None,
page_token=None,
minimum_importance=None):
"""List messages associated with the execution of a job.
Args:
job_id: A string representing the job_id for the workflow as returned
by the create_job() request.
start_time: If specified, only messages generated after the start time
will be returned, otherwise all messages since job started will be
returned. The value is a string representing UTC time
(e.g., '2015-08-18T21:03:50.644Z')
end_time: If specified, only messages generated before the end time
will be returned, otherwise all messages up to current time will be
returned. The value is a string representing UTC time
(e.g., '2015-08-18T21:03:50.644Z')
page_token: A string to be used as next page token if the list call
returned paginated results.
minimum_importance: Filter for messages based on importance. The possible
string values in increasing order of importance are: JOB_MESSAGE_DEBUG,
JOB_MESSAGE_DETAILED, JOB_MESSAGE_BASIC, JOB_MESSAGE_WARNING,
JOB_MESSAGE_ERROR. For example, a filter set on warning will allow only
warnings and errors and exclude all others.
Returns:
A tuple consisting of a list of JobMessage instances and a
next page token string.
Raises:
RuntimeError: if an unexpected value for the message_importance argument
is used.
The JobMessage objects returned by the call contain the following fields:
id: A unique string identifier for the message.
time: A string representing the UTC time of the message
(e.g., '2015-08-18T21:03:50.644Z')
messageImportance: An enumeration value for the message importance. The
value if converted to string will have the following possible values:
JOB_MESSAGE_DEBUG, JOB_MESSAGE_DETAILED, JOB_MESSAGE_BASIC,
JOB_MESSAGE_WARNING, JOB_MESSAGE_ERROR.
messageText: A message string.
"""
request = dataflow.DataflowProjectsLocationsJobsMessagesListRequest(
jobId=job_id,
location=self.google_cloud_options.region,
projectId=self.google_cloud_options.project)
if page_token is not None:
request.pageToken = page_token
if start_time is not None:
request.startTime = start_time
if end_time is not None:
request.endTime = end_time
if minimum_importance is not None:
if minimum_importance == 'JOB_MESSAGE_DEBUG':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest.
MinimumImportanceValueValuesEnum.JOB_MESSAGE_DEBUG)
elif minimum_importance == 'JOB_MESSAGE_DETAILED':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest.
MinimumImportanceValueValuesEnum.JOB_MESSAGE_DETAILED)
elif minimum_importance == 'JOB_MESSAGE_BASIC':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest.
MinimumImportanceValueValuesEnum.JOB_MESSAGE_BASIC)
elif minimum_importance == 'JOB_MESSAGE_WARNING':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest.
MinimumImportanceValueValuesEnum.JOB_MESSAGE_WARNING)
elif minimum_importance == 'JOB_MESSAGE_ERROR':
request.minimumImportance = (
dataflow.DataflowProjectsLocationsJobsMessagesListRequest.
MinimumImportanceValueValuesEnum.JOB_MESSAGE_ERROR)