-
Notifications
You must be signed in to change notification settings - Fork 4k
/
timer_thread.cpp
483 lines (439 loc) · 17 KB
/
timer_thread.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// bthread - An M:N threading library to make applications more concurrent.
#include <queue> // heap functions
#include "butil/scoped_lock.h"
#include "butil/logging.h"
#include "butil/third_party/murmurhash3/murmurhash3.h" // fmix64
#include "butil/resource_pool.h"
#include "butil/threading/platform_thread.h"
#include "bvar/bvar.h"
#include "bthread/sys_futex.h"
#include "bthread/timer_thread.h"
#include "bthread/log.h"
namespace bthread {
// Defined in task_control.cpp
void run_worker_startfn();
const TimerThread::TaskId TimerThread::INVALID_TASK_ID = 0;
TimerThreadOptions::TimerThreadOptions()
: num_buckets(13) {
}
// A task contains the necessary information for running fn(arg).
// Tasks are created in Bucket::schedule and destroyed in TimerThread::run
struct BAIDU_CACHELINE_ALIGNMENT TimerThread::Task {
Task* next; // For linking tasks in a Bucket.
int64_t run_time; // run the task at this realtime
void (*fn)(void*); // the fn(arg) to run
void* arg;
// Current TaskId, checked against version in TimerThread::run to test
// if this task is unscheduled.
TaskId task_id;
// initial_version: not run yet
// initial_version + 1: running
// initial_version + 2: removed (also the version of next Task reused
// this struct)
butil::atomic<uint32_t> version;
Task() : version(2/*skip 0*/) {}
// Run this task and delete this struct.
// Returns true if fn(arg) did run.
bool run_and_delete();
// Delete this struct if this task was unscheduled.
// Returns true on deletion.
bool try_delete();
};
// Timer tasks are sharded into different Buckets to reduce contentions.
class BAIDU_CACHELINE_ALIGNMENT TimerThread::Bucket {
public:
Bucket()
: _nearest_run_time(std::numeric_limits<int64_t>::max())
, _task_head(NULL) {
}
~Bucket() {}
struct ScheduleResult {
TimerThread::TaskId task_id;
bool earlier;
};
// Schedule a task into this bucket.
// Returns the TaskId and if it has the nearest run time.
ScheduleResult schedule(void (*fn)(void*), void* arg,
const timespec& abstime);
// Pull all scheduled tasks.
// This function is called in timer thread.
Task* consume_tasks();
private:
FastPthreadMutex _mutex;
int64_t _nearest_run_time;
Task* _task_head;
};
// Utilies for making and extracting TaskId.
inline TimerThread::TaskId make_task_id(
butil::ResourceId<TimerThread::Task> slot, uint32_t version) {
return TimerThread::TaskId((((uint64_t)version) << 32) | slot.value);
}
inline
butil::ResourceId<TimerThread::Task> slot_of_task_id(TimerThread::TaskId id) {
butil::ResourceId<TimerThread::Task> slot = { (id & 0xFFFFFFFFul) };
return slot;
}
inline uint32_t version_of_task_id(TimerThread::TaskId id) {
return (uint32_t)(id >> 32);
}
inline bool task_greater(const TimerThread::Task* a, const TimerThread::Task* b) {
return a->run_time > b->run_time;
}
void* TimerThread::run_this(void* arg) {
butil::PlatformThread::SetName("brpc_timer");
static_cast<TimerThread*>(arg)->run();
return NULL;
}
TimerThread::TimerThread()
: _started(false)
, _stop(false)
, _buckets(NULL)
, _nearest_run_time(std::numeric_limits<int64_t>::max())
, _nsignals(0)
, _thread(0) {
}
TimerThread::~TimerThread() {
stop_and_join();
delete [] _buckets;
_buckets = NULL;
}
int TimerThread::start(const TimerThreadOptions* options_in) {
if (_started) {
return 0;
}
if (options_in) {
_options = *options_in;
}
if (_options.num_buckets == 0) {
LOG(ERROR) << "num_buckets can't be 0";
return EINVAL;
}
if (_options.num_buckets > 1024) {
LOG(ERROR) << "num_buckets=" << _options.num_buckets << " is too big";
return EINVAL;
}
_buckets = new (std::nothrow) Bucket[_options.num_buckets];
if (NULL == _buckets) {
LOG(ERROR) << "Fail to new _buckets";
return ENOMEM;
}
const int ret = pthread_create(&_thread, NULL, TimerThread::run_this, this);
if (ret) {
return ret;
}
_started = true;
return 0;
}
TimerThread::Task* TimerThread::Bucket::consume_tasks() {
Task* head = NULL;
if (_task_head) { // NOTE: schedule() and consume_tasks() are sequenced
// by TimerThread._nearest_run_time and fenced by TimerThread._mutex.
// We can avoid touching the mutex and related cacheline when the
// bucket is actually empty.
BAIDU_SCOPED_LOCK(_mutex);
if (_task_head) {
head = _task_head;
_task_head = NULL;
_nearest_run_time = std::numeric_limits<int64_t>::max();
}
}
return head;
}
TimerThread::Bucket::ScheduleResult
TimerThread::Bucket::schedule(void (*fn)(void*), void* arg,
const timespec& abstime) {
butil::ResourceId<Task> slot_id;
Task* task = butil::get_resource<Task>(&slot_id);
if (task == NULL) {
ScheduleResult result = { INVALID_TASK_ID, false };
return result;
}
task->next = NULL;
task->fn = fn;
task->arg = arg;
task->run_time = butil::timespec_to_microseconds(abstime);
uint32_t version = task->version.load(butil::memory_order_relaxed);
if (version == 0) { // skip 0.
task->version.fetch_add(2, butil::memory_order_relaxed);
version = 2;
}
const TaskId id = make_task_id(slot_id, version);
task->task_id = id;
bool earlier = false;
{
BAIDU_SCOPED_LOCK(_mutex);
task->next = _task_head;
_task_head = task;
if (task->run_time < _nearest_run_time) {
_nearest_run_time = task->run_time;
earlier = true;
}
}
ScheduleResult result = { id, earlier };
return result;
}
TimerThread::TaskId TimerThread::schedule(
void (*fn)(void*), void* arg, const timespec& abstime) {
if (_stop.load(butil::memory_order_relaxed) || !_started) {
// Not add tasks when TimerThread is about to stop.
return INVALID_TASK_ID;
}
// Hashing by pthread id is better for cache locality.
const Bucket::ScheduleResult result =
_buckets[butil::fmix64(pthread_numeric_id()) % _options.num_buckets]
.schedule(fn, arg, abstime);
if (result.earlier) {
bool earlier = false;
const int64_t run_time = butil::timespec_to_microseconds(abstime);
{
BAIDU_SCOPED_LOCK(_mutex);
if (run_time < _nearest_run_time) {
_nearest_run_time = run_time;
++_nsignals;
earlier = true;
}
}
if (earlier) {
futex_wake_private(&_nsignals, 1);
}
}
return result.task_id;
}
// Notice that we don't recycle the Task in this function, let TimerThread::run
// do it. The side effect is that we may allocate many unscheduled tasks before
// TimerThread wakes up. The number is approximately qps * timeout_s. Under the
// precondition that ResourcePool<Task> caches 128K for each thread, with some
// further calculations, we can conclude that in a RPC scenario:
// when timeout / latency < 2730 (128K / sizeof(Task))
// unscheduled tasks do not occupy additional memory. 2730 is a large ratio
// between timeout and latency in most RPC scenarios, this is why we don't
// try to reuse tasks right now inside unschedule() with more complicated code.
int TimerThread::unschedule(TaskId task_id) {
const butil::ResourceId<Task> slot_id = slot_of_task_id(task_id);
Task* const task = butil::address_resource(slot_id);
if (task == NULL) {
LOG(ERROR) << "Invalid task_id=" << task_id;
return -1;
}
const uint32_t id_version = version_of_task_id(task_id);
uint32_t expected_version = id_version;
// This CAS is rarely contended, should be fast.
// The acquire fence is paired with release fence in Task::run_and_delete
// to make sure that we see all changes brought by fn(arg).
if (task->version.compare_exchange_strong(
expected_version, id_version + 2,
butil::memory_order_acquire)) {
return 0;
}
return (expected_version == id_version + 1) ? 1 : -1;
}
bool TimerThread::Task::run_and_delete() {
const uint32_t id_version = version_of_task_id(task_id);
uint32_t expected_version = id_version;
// This CAS is rarely contended, should be fast.
if (version.compare_exchange_strong(
expected_version, id_version + 1, butil::memory_order_relaxed)) {
fn(arg);
// The release fence is paired with acquire fence in
// TimerThread::unschedule to make changes of fn(arg) visible.
version.store(id_version + 2, butil::memory_order_release);
butil::return_resource(slot_of_task_id(task_id));
return true;
} else if (expected_version == id_version + 2) {
// already unscheduled.
butil::return_resource(slot_of_task_id(task_id));
return false;
} else {
// Impossible.
LOG(ERROR) << "Invalid version=" << expected_version
<< ", expecting " << id_version + 2;
return false;
}
}
bool TimerThread::Task::try_delete() {
const uint32_t id_version = version_of_task_id(task_id);
if (version.load(butil::memory_order_relaxed) != id_version) {
CHECK_EQ(version.load(butil::memory_order_relaxed), id_version + 2);
butil::return_resource(slot_of_task_id(task_id));
return true;
}
return false;
}
template <typename T>
static T deref_value(void* arg) {
return *(T*)arg;
}
void TimerThread::run() {
run_worker_startfn();
#ifdef BAIDU_INTERNAL
logging::ComlogInitializer comlog_initializer;
#endif
int64_t last_sleep_time = butil::gettimeofday_us();
BT_VLOG << "Started TimerThread=" << pthread_self();
// min heap of tasks (ordered by run_time)
std::vector<Task*> tasks;
tasks.reserve(4096);
// vars
size_t nscheduled = 0;
bvar::PassiveStatus<size_t> nscheduled_var(deref_value<size_t>, &nscheduled);
bvar::PerSecond<bvar::PassiveStatus<size_t> > nscheduled_second(&nscheduled_var);
size_t ntriggered = 0;
bvar::PassiveStatus<size_t> ntriggered_var(deref_value<size_t>, &ntriggered);
bvar::PerSecond<bvar::PassiveStatus<size_t> > ntriggered_second(&ntriggered_var);
double busy_seconds = 0;
bvar::PassiveStatus<double> busy_seconds_var(deref_value<double>, &busy_seconds);
bvar::PerSecond<bvar::PassiveStatus<double> > busy_seconds_second(&busy_seconds_var);
if (!_options.bvar_prefix.empty()) {
nscheduled_second.expose_as(_options.bvar_prefix, "scheduled_second");
ntriggered_second.expose_as(_options.bvar_prefix, "triggered_second");
busy_seconds_second.expose_as(_options.bvar_prefix, "usage");
}
while (!_stop.load(butil::memory_order_relaxed)) {
// Clear _nearest_run_time before consuming tasks from buckets.
// This helps us to be aware of earliest task of the new tasks before we
// would run the consumed tasks.
{
BAIDU_SCOPED_LOCK(_mutex);
_nearest_run_time = std::numeric_limits<int64_t>::max();
}
// Pull tasks from buckets.
for (size_t i = 0; i < _options.num_buckets; ++i) {
Bucket& bucket = _buckets[i];
for (Task* p = bucket.consume_tasks(); p != nullptr; ++nscheduled) {
// p->next should be kept first
// in case of the deletion of Task p which is unscheduled
Task* next_task = p->next;
if (!p->try_delete()) { // remove the task if it's unscheduled
tasks.push_back(p);
std::push_heap(tasks.begin(), tasks.end(), task_greater);
}
p = next_task;
}
}
bool pull_again = false;
while (!tasks.empty()) {
Task* task1 = tasks[0]; // the about-to-run task
if (butil::gettimeofday_us() < task1->run_time) { // not ready yet.
break;
}
// Each time before we run the earliest task (that we think),
// check the globally shared _nearest_run_time. If a task earlier
// than task1 was scheduled during pulling from buckets, we'll
// know. In RPC scenarios, _nearest_run_time is not often changed by
// threads because the task needs to be the earliest in its bucket,
// since run_time of scheduled tasks are often in ascending order,
// most tasks are unlikely to be "earliest". (If run_time of tasks
// are in descending orders, all tasks are "earliest" after every
// insertion, and they'll grab _mutex and change _nearest_run_time
// frequently, fortunately this is not true at most of time).
{
BAIDU_SCOPED_LOCK(_mutex);
if (task1->run_time > _nearest_run_time) {
// a task is earlier than task1. We need to check buckets.
pull_again = true;
break;
}
}
std::pop_heap(tasks.begin(), tasks.end(), task_greater);
tasks.pop_back();
if (task1->run_and_delete()) {
++ntriggered;
}
}
if (pull_again) {
BT_VLOG << "pull again, tasks=" << tasks.size();
continue;
}
// The realtime to wait for.
int64_t next_run_time = std::numeric_limits<int64_t>::max();
if (!tasks.empty()) {
next_run_time = tasks[0]->run_time;
}
// Similarly with the situation before running tasks, we check
// _nearest_run_time to prevent us from waiting on a non-earliest
// task. We also use the _nsignal to make sure that if new task
// is earlier than the realtime that we wait for, we'll wake up.
int expected_nsignals = 0;
{
BAIDU_SCOPED_LOCK(_mutex);
if (next_run_time > _nearest_run_time) {
// a task is earlier than what we would wait for.
// We need to check the buckets.
continue;
} else {
_nearest_run_time = next_run_time;
expected_nsignals = _nsignals;
}
}
timespec* ptimeout = NULL;
timespec next_timeout = { 0, 0 };
const int64_t now = butil::gettimeofday_us();
if (next_run_time != std::numeric_limits<int64_t>::max()) {
next_timeout = butil::microseconds_to_timespec(next_run_time - now);
ptimeout = &next_timeout;
}
busy_seconds += (now - last_sleep_time) / 1000000.0;
futex_wait_private(&_nsignals, expected_nsignals, ptimeout);
last_sleep_time = butil::gettimeofday_us();
}
BT_VLOG << "Ended TimerThread=" << pthread_self();
}
void TimerThread::stop_and_join() {
_stop.store(true, butil::memory_order_relaxed);
if (_started) {
{
BAIDU_SCOPED_LOCK(_mutex);
// trigger pull_again and wakeup TimerThread
_nearest_run_time = 0;
++_nsignals;
}
if (pthread_self() != _thread) {
// stop_and_join was not called from a running task.
// wake up the timer thread in case it is sleeping.
futex_wake_private(&_nsignals, 1);
pthread_join(_thread, NULL);
}
}
}
static pthread_once_t g_timer_thread_once = PTHREAD_ONCE_INIT;
static TimerThread* g_timer_thread = NULL;
static void init_global_timer_thread() {
g_timer_thread = new (std::nothrow) TimerThread;
if (g_timer_thread == NULL) {
LOG(FATAL) << "Fail to new g_timer_thread";
return;
}
TimerThreadOptions options;
options.bvar_prefix = "bthread_timer";
const int rc = g_timer_thread->start(&options);
if (rc != 0) {
LOG(FATAL) << "Fail to start timer_thread, " << berror(rc);
delete g_timer_thread;
g_timer_thread = NULL;
return;
}
}
TimerThread* get_or_create_global_timer_thread() {
pthread_once(&g_timer_thread_once, init_global_timer_thread);
return g_timer_thread;
}
TimerThread* get_global_timer_thread() {
return g_timer_thread;
}
} // end namespace bthread