diff --git a/datafusion-cli/Cargo.lock b/datafusion-cli/Cargo.lock index c5b34df4f1cf..995a49d29e7a 100644 --- a/datafusion-cli/Cargo.lock +++ b/datafusion-cli/Cargo.lock @@ -387,7 +387,7 @@ checksum = "c6fa2087f2753a7da8cc1c0dbfcf89579dd57458e36769de5ac750b4671737ca" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -714,9 +714,9 @@ dependencies = [ [[package]] name = "backtrace" -version = "0.3.72" +version = "0.3.73" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "17c6a35df3749d2e8bb1b7b21a976d82b15548788d2735b9d82f329268f71a11" +checksum = "5cc23269a4f8976d0a4d2e7109211a419fe30e8d88d677cd60b6bc79c5732e0a" dependencies = [ "addr2line", "cc", @@ -1099,7 +1099,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "edb49164822f3ee45b17acd4a208cfc1251410cf0cad9a833234c9890774dd9f" dependencies = [ "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -1278,7 +1278,6 @@ dependencies = [ "datafusion-common", "datafusion-execution", "datafusion-expr", - "datafusion-physical-expr", "hashbrown 0.14.5", "hex", "itertools", @@ -1687,7 +1686,7 @@ checksum = "87750cf4b7a4c0625b1529e4c543c2182106e4dedc60a2a6455e00d212c489ac" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -1911,12 +1910,12 @@ dependencies = [ [[package]] name = "http-body-util" -version = "0.1.1" +version = "0.1.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "0475f8b2ac86659c21b64320d5d653f9efe42acd2a4e560073ec61a155a34f1d" +checksum = "793429d76616a256bcb62c2a2ec2bed781c8307e797e2598c50010f2bee2544f" dependencies = [ "bytes", - "futures-core", + "futures-util", "http 1.1.0", "http-body 1.0.0", "pin-project-lite", @@ -1924,9 +1923,9 @@ dependencies = [ [[package]] name = "httparse" -version = "1.8.0" +version = "1.9.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "d897f394bad6a705d5f4104762e116a75639e470d80901eed05a860a95cb1904" +checksum = "0fcc0b4a115bf80b728eb8ea024ad5bd707b615bfed49e0665b6e0f86fd082d9" [[package]] name = "httpdate" @@ -2001,18 +2000,19 @@ dependencies = [ [[package]] name = "hyper-rustls" -version = "0.26.0" +version = "0.27.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "a0bea761b46ae2b24eb4aef630d8d1c398157b6fc29e6350ecf090a0b70c952c" +checksum = "5ee4be2c948921a1a5320b629c4193916ed787a7f7f293fd3f7f5a6c9de74155" dependencies = [ "futures-util", "http 1.1.0", "hyper 1.3.1", "hyper-util", - "rustls 0.22.4", + "rustls 0.23.10", + "rustls-native-certs 0.7.0", "rustls-pki-types", "tokio", - "tokio-rustls 0.25.0", + "tokio-rustls 0.26.0", "tower-service", ] @@ -2148,9 +2148,9 @@ dependencies = [ [[package]] name = "lazy_static" -version = "1.4.0" +version = "1.5.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646" +checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe" [[package]] name = "lexical-core" @@ -2326,9 +2326,9 @@ dependencies = [ [[package]] name = "memchr" -version = "2.7.2" +version = "2.7.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "6c8640c5d730cb13ebd907d8d04b52f55ac9a2eec55b440c8892f40d56c76c1d" +checksum = "78ca9ab1a0babb1e7d5695e3530886289c18cf2f87ec19a575a0abdce112e3a3" [[package]] name = "mimalloc" @@ -2347,9 +2347,9 @@ checksum = "6877bb514081ee2a7ff5ef9de3281f14a4dd4bceac4c09388074a6b5df8a139a" [[package]] name = "miniz_oxide" -version = "0.7.3" +version = "0.7.4" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "87dfd01fe195c66b572b37921ad8803d010623c0aca821bea2302239d155cdae" +checksum = "b8a240ddb74feaf34a79a7add65a741f3167852fba007066dcac1ca548d89c08" dependencies = [ "adler", ] @@ -2483,9 +2483,9 @@ dependencies = [ [[package]] name = "object" -version = "0.35.0" +version = "0.36.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "b8ec7ab813848ba4522158d5517a6093db1ded27575b070f4177b8d12b41db5e" +checksum = "576dfe1fc8f9df304abb159d767a29d0476f7750fbf8aa7ad07816004a207434" dependencies = [ "memchr", ] @@ -2699,7 +2699,7 @@ checksum = "2f38a4412a78282e09a2cf38d195ea5420d15ba0602cb375210efbc877243965" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -2788,9 +2788,9 @@ dependencies = [ [[package]] name = "proc-macro2" -version = "1.0.85" +version = "1.0.86" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "22244ce15aa966053a896d1accb3a6e68469b97c7f33f284b99f0d576879fc23" +checksum = "5e719e8df665df0d1c8fbfd238015744736151d4445ec0836b8e628aae103b77" dependencies = [ "unicode-ident", ] @@ -2811,6 +2811,53 @@ dependencies = [ "serde", ] +[[package]] +name = "quinn" +version = "0.11.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "e4ceeeeabace7857413798eb1ffa1e9c905a9946a57d81fb69b4b71c4d8eb3ad" +dependencies = [ + "bytes", + "pin-project-lite", + "quinn-proto", + "quinn-udp", + "rustc-hash", + "rustls 0.23.10", + "thiserror", + "tokio", + "tracing", +] + +[[package]] +name = "quinn-proto" +version = "0.11.3" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "ddf517c03a109db8100448a4be38d498df8a210a99fe0e1b9eaf39e78c640efe" +dependencies = [ + "bytes", + "rand", + "ring 0.17.8", + "rustc-hash", + "rustls 0.23.10", + "slab", + "thiserror", + "tinyvec", + "tracing", +] + +[[package]] +name = "quinn-udp" +version = "0.5.2" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "9096629c45860fc7fb143e125eb826b5e721e10be3263160c7d60ca832cf8c46" +dependencies = [ + "libc", + "once_cell", + "socket2", + "tracing", + "windows-sys 0.52.0", +] + [[package]] name = "quote" version = "1.0.36" @@ -2862,9 +2909,9 @@ dependencies = [ [[package]] name = "redox_syscall" -version = "0.5.1" +version = "0.5.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "469052894dcb553421e483e4209ee581a45100d31b4018de03e5a7ad86374a7e" +checksum = "c82cf8cff14456045f55ec4241383baeff27af886adb72ffb2162f99911de0fd" dependencies = [ "bitflags 2.5.0", ] @@ -2917,9 +2964,9 @@ checksum = "7a66a03ae7c801facd77a29370b4faec201768915ac14a721ba36f20bc9c209b" [[package]] name = "reqwest" -version = "0.12.4" +version = "0.12.5" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "566cafdd92868e0939d3fb961bd0dc25fcfaaed179291093b3d43e6b3150ea10" +checksum = "c7d6d2a27d57148378eb5e111173f4276ad26340ecc5c49a4a2152167a2d6a37" dependencies = [ "base64 0.22.1", "bytes", @@ -2930,7 +2977,7 @@ dependencies = [ "http-body 1.0.0", "http-body-util", "hyper 1.3.1", - "hyper-rustls 0.26.0", + "hyper-rustls 0.27.2", "hyper-util", "ipnet", "js-sys", @@ -2939,7 +2986,8 @@ dependencies = [ "once_cell", "percent-encoding", "pin-project-lite", - "rustls 0.22.4", + "quinn", + "rustls 0.23.10", "rustls-native-certs 0.7.0", "rustls-pemfile 2.1.2", "rustls-pki-types", @@ -2948,7 +2996,7 @@ dependencies = [ "serde_urlencoded", "sync_wrapper", "tokio", - "tokio-rustls 0.25.0", + "tokio-rustls 0.26.0", "tokio-util", "tower-service", "url", @@ -3027,6 +3075,12 @@ version = "0.1.24" source = "registry+https://github.com/rust-lang/crates.io-index" checksum = "719b953e2095829ee67db738b3bfa9fa368c94900df327b3f07fe6e794d2fe1f" +[[package]] +name = "rustc-hash" +version = "1.1.0" +source = "registry+https://github.com/rust-lang/crates.io-index" +checksum = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2" + [[package]] name = "rustc_version" version = "0.4.0" @@ -3063,11 +3117,11 @@ dependencies = [ [[package]] name = "rustls" -version = "0.22.4" +version = "0.23.10" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "bf4ef73721ac7bcd79b2b315da7779d8fc09718c6b3d2d1b2d94850eb8c18432" +checksum = "05cff451f60db80f490f3c182b77c35260baace73209e9cdbbe526bfe3a4d402" dependencies = [ - "log", + "once_cell", "ring 0.17.8", "rustls-pki-types", "rustls-webpki", @@ -3257,7 +3311,7 @@ checksum = "500cbc0ebeb6f46627f50f3f5811ccf6bf00643be300b4c3eabc0ef55dc5b5ba" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3392,7 +3446,7 @@ checksum = "01b2e185515564f15375f593fb966b5718bc624ba77fe49fa4616ad619690554" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3438,7 +3492,7 @@ dependencies = [ "proc-macro2", "quote", "rustversion", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3451,14 +3505,14 @@ dependencies = [ "proc-macro2", "quote", "rustversion", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] name = "subtle" -version = "2.5.0" +version = "2.6.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "81cdd64d312baedb58e21336b31bc043b77e01cc99033ce76ef539f78e965ebc" +checksum = "0d0208408ba0c3df17ed26eb06992cb1a1268d41b2c0e12e65203fbe3972cee5" [[package]] name = "syn" @@ -3473,9 +3527,9 @@ dependencies = [ [[package]] name = "syn" -version = "2.0.66" +version = "2.0.67" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "c42f3f41a2de00b01c0aaad383c5a45241efc8b2d1eda5661812fda5f3cdcff5" +checksum = "ff8655ed1d86f3af4ee3fd3263786bc14245ad17c4c7e85ba7187fb3ae028c90" dependencies = [ "proc-macro2", "quote", @@ -3484,9 +3538,9 @@ dependencies = [ [[package]] name = "sync_wrapper" -version = "0.1.2" +version = "1.0.1" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "2047c6ded9c721764247e62cd3b03c09ffc529b2ba5b10ec482ae507a4a70160" +checksum = "a7065abeca94b6a8a577f9bd45aa0867a2238b74e8eb67cf10d492bc39351394" [[package]] name = "tempfile" @@ -3538,7 +3592,7 @@ checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3633,7 +3687,7 @@ checksum = "5f5ae998a069d4b5aba8ee9dad856af7d520c3699e6159b185c2acd48155d39a" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3649,11 +3703,11 @@ dependencies = [ [[package]] name = "tokio-rustls" -version = "0.25.0" +version = "0.26.0" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "775e0c0f0adb3a2f22a00c4745d728b479985fc15ee7ca6a2608388c5569860f" +checksum = "0c7bc40d0e5a97695bb96e27995cd3a08538541b0a846f65bba7a359f36700d4" dependencies = [ - "rustls 0.22.4", + "rustls 0.23.10", "rustls-pki-types", "tokio", ] @@ -3730,7 +3784,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3775,7 +3829,7 @@ checksum = "f03ca4cb38206e2bef0700092660bb74d696f808514dae47fa1467cbfe26e96e" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] @@ -3831,9 +3885,9 @@ checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1" [[package]] name = "url" -version = "2.5.0" +version = "2.5.2" source = "registry+https://github.com/rust-lang/crates.io-index" -checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633" +checksum = "22784dbdf76fdde8af1aeda5622b546b422b6fc585325248a2bf9f5e41e94d6c" dependencies = [ "form_urlencoded", "idna", @@ -3929,7 +3983,7 @@ dependencies = [ "once_cell", "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", "wasm-bindgen-shared", ] @@ -3963,7 +4017,7 @@ checksum = "e94f17b526d0a461a191c78ea52bbce64071ed5c04c9ffe424dcb38f74171bb7" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", "wasm-bindgen-backend", "wasm-bindgen-shared", ] @@ -4228,7 +4282,7 @@ checksum = "15e934569e47891f7d9411f1a451d947a60e000ab3bd24fbb970f000387d1b3b" dependencies = [ "proc-macro2", "quote", - "syn 2.0.66", + "syn 2.0.67", ] [[package]] diff --git a/datafusion-examples/README.md b/datafusion-examples/README.md index 6150c551c900..0eef9091b2bc 100644 --- a/datafusion-examples/README.md +++ b/datafusion-examples/README.md @@ -45,6 +45,7 @@ cargo run --example csv_sql - [`advanced_udaf.rs`](examples/advanced_udaf.rs): Define and invoke a more complicated User Defined Aggregate Function (UDAF) - [`advanced_udf.rs`](examples/advanced_udf.rs): Define and invoke a more complicated User Defined Scalar Function (UDF) - [`advanced_udwf.rs`](examples/advanced_udwf.rs): Define and invoke a more complicated User Defined Window Function (UDWF) +- [`advanced_parquet_index.rs`](examples/advanced_parquet_index.rs): Creates a detailed secondary index that covers the contents of several parquet files - [`avro_sql.rs`](examples/avro_sql.rs): Build and run a query plan from a SQL statement against a local AVRO file - [`catalog.rs`](examples/catalog.rs): Register the table into a custom catalog - [`csv_sql.rs`](examples/csv_sql.rs): Build and run a query plan from a SQL statement against a local CSV file diff --git a/datafusion-examples/examples/advanced_parquet_index.rs b/datafusion-examples/examples/advanced_parquet_index.rs new file mode 100644 index 000000000000..9bf71e52c3de --- /dev/null +++ b/datafusion-examples/examples/advanced_parquet_index.rs @@ -0,0 +1,664 @@ +// Licensed to the Apache Software Foundation (ASF) under one +// or more contributor license agreements. See the NOTICE file +// distributed with this work for additional information +// regarding copyright ownership. The ASF licenses this file +// to you under the Apache License, Version 2.0 (the +// "License"); you may not use this file except in compliance +// with the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, +// software distributed under the License is distributed on an +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, either express or implied. See the License for the +// specific language governing permissions and limitations +// under the License. + +use arrow::array::{ArrayRef, Int32Array, RecordBatch, StringArray}; +use arrow_schema::SchemaRef; +use async_trait::async_trait; +use bytes::Bytes; +use datafusion::datasource::listing::PartitionedFile; +use datafusion::datasource::physical_plan::parquet::{ + ParquetAccessPlan, ParquetExecBuilder, +}; +use datafusion::datasource::physical_plan::{ + parquet::ParquetFileReaderFactory, FileMeta, FileScanConfig, +}; +use datafusion::datasource::TableProvider; +use datafusion::execution::context::SessionState; +use datafusion::execution::object_store::ObjectStoreUrl; +use datafusion::parquet::arrow::arrow_reader::{ + ArrowReaderOptions, ParquetRecordBatchReaderBuilder, RowSelection, RowSelector, +}; +use datafusion::parquet::arrow::async_reader::{AsyncFileReader, ParquetObjectReader}; +use datafusion::parquet::arrow::ArrowWriter; +use datafusion::parquet::file::metadata::ParquetMetaData; +use datafusion::parquet::file::properties::{EnabledStatistics, WriterProperties}; +use datafusion::parquet::schema::types::ColumnPath; +use datafusion::physical_expr::PhysicalExpr; +use datafusion::physical_optimizer::pruning::PruningPredicate; +use datafusion::physical_plan::metrics::ExecutionPlanMetricsSet; +use datafusion::physical_plan::ExecutionPlan; +use datafusion::prelude::*; +use datafusion_common::{ + internal_datafusion_err, DFSchema, DataFusionError, Result, ScalarValue, +}; +use datafusion_expr::utils::conjunction; +use datafusion_expr::{TableProviderFilterPushDown, TableType}; +use datafusion_physical_expr::utils::{Guarantee, LiteralGuarantee}; +use futures::future::BoxFuture; +use futures::FutureExt; +use object_store::ObjectStore; +use std::any::Any; +use std::collections::{HashMap, HashSet}; +use std::fs::File; +use std::ops::Range; +use std::path::{Path, PathBuf}; +use std::sync::atomic::{AtomicBool, Ordering}; +use std::sync::Arc; +use tempfile::TempDir; +use url::Url; + +/// This example demonstrates using low level DataFusion APIs to read only +/// certain row groups and ranges from parquet files, based on external +/// information. +/// +/// Using these APIs, you can instruct DataFusion's parquet reader to skip +/// ("prune") portions of files that do not contain relevant data. These APIs +/// can be useful for doing low latency queries over a large number of Parquet +/// files on remote storage (e.g. S3) where the cost of reading the metadata for +/// each file is high (e.g. because it requires a network round trip to the +/// storage service). +/// +/// Depending on the information from the index, DataFusion can make a request +/// to the storage service (e.g. S3) to read only the necessary data. +/// +/// Note that this example uses a hard coded index implementation. For a more +/// realistic example of creating an index to prune files, see the +/// `parquet_index.rs` example. +/// +/// Specifically, this example illustrates how to: +/// 1. Use [`ParquetFileReaderFactory`] to avoid re-reading parquet metadata on each query +/// 2. Use [`PruningPredicate`] for predicate analysis +/// 3. Pass a row group selection to [`ParuetExec`] +/// 4. Pass a row selection (within a row group) to [`ParquetExec`] +/// +/// Note this is a *VERY* low level example for people who want to build their +/// own custom indexes (e.g. for low latency queries). Most users should use +/// higher level APIs for reading parquet files: +/// [`SessionContext::read_parquet`] or [`ListingTable`], which also do file +/// pruning based on parquet statistics (using the same underlying APIs) +/// +/// # Diagram +/// +/// This diagram shows how the `ParquetExec` is configured to do only a single +/// (range) read from a parquet file, for the data that is needed. It does +/// not read the file footer or any of the row groups that are not needed. +/// +/// ```text +/// ┌───────────────────────┐ The TableProvider configures the +/// │ ┌───────────────────┐ │ ParquetExec: +/// │ │ │ │ +/// │ └───────────────────┘ │ +/// │ ┌───────────────────┐ │ +/// Row │ │ │ │ 1. To read only specific Row +/// Groups │ └───────────────────┘ │ Groups (the ParquetExec tries +/// │ ┌───────────────────┐ │ to reduce this further based +/// │ │ │ │ on metadata) +/// │ └───────────────────┘ │ ┌────────────────────┐ +/// │ ┌───────────────────┐ │ │ │ +/// │ │ │◀┼ ─ ─ ┐ │ ParquetExec │ +/// │ └───────────────────┘ │ │ (Parquet Reader) │ +/// │ ... │ └ ─ ─ ─ ─│ │ +/// │ ┌───────────────────┐ │ │ ╔═══════════════╗ │ +/// │ │ │ │ │ ║ParquetMetadata║ │ +/// │ └───────────────────┘ │ │ ╚═══════════════╝ │ +/// │ ╔═══════════════════╗ │ └────────────────────┘ +/// │ ║ Thrift metadata ║ │ +/// │ ╚═══════════════════╝ │ 1. With cached ParquetMetadata, so +/// └───────────────────────┘ the ParquetExec does not re-read / +/// Parquet File decode the thrift footer +/// +/// ``` +/// +/// Within a Row Group, Column Chunks store data in DataPages. This example also +/// shows how to configure the ParquetExec to read a `RowSelection` (row ranges) +/// which will skip unneeded data pages. This requires that the Parquet file has +/// a [Page Index]. +/// +/// ```text +/// ┌───────────────────────┐ If the RowSelection does not include any +/// │ ... │ rows from a particular Data Page, that +/// │ │ Data Page is not fetched or decoded. +/// │ ┌───────────────────┐ │ Note this requires a PageIndex +/// │ │ ┌──────────┐ │ │ +/// Row │ │ │DataPage 0│ │ │ ┌────────────────────┐ +/// Groups │ │ └──────────┘ │ │ │ │ +/// │ │ ┌──────────┐ │ │ │ ParquetExec │ +/// │ │ ... │DataPage 1│ ◀┼ ┼ ─ ─ ─ │ (Parquet Reader) │ +/// │ │ └──────────┘ │ │ └ ─ ─ ─ ─ ─│ │ +/// │ │ ┌──────────┐ │ │ │ ╔═══════════════╗ │ +/// │ │ │DataPage 2│ │ │ If only rows │ ║ParquetMetadata║ │ +/// │ │ └──────────┘ │ │ from DataPage 1 │ ╚═══════════════╝ │ +/// │ └───────────────────┘ │ are selected, └────────────────────┘ +/// │ │ only DataPage 1 +/// │ ... │ is fetched and +/// │ │ decoded +/// │ ╔═══════════════════╗ │ +/// │ ║ Thrift metadata ║ │ +/// │ ╚═══════════════════╝ │ +/// └───────────────────────┘ +/// Parquet File +/// ``` +/// +/// [`ListingTable`]: datafusion::datasource::listing::ListingTable +/// [Page Index](https://github.com/apache/parquet-format/blob/master/PageIndex.md) +#[tokio::main] +async fn main() -> Result<()> { + // the object store is used to read the parquet files (in this case, it is + // a local file system, but in a real system it could be S3, GCS, etc) + let object_store: Arc = + Arc::new(object_store::local::LocalFileSystem::new()); + + // Create a custom table provider with our special index. + let provider = Arc::new(IndexTableProvider::try_new(Arc::clone(&object_store))?); + + // SessionContext for running queries that has the table provider + // registered as "index_table" + let ctx = SessionContext::new(); + ctx.register_table("index_table", Arc::clone(&provider) as _)?; + + // register object store provider for urls like `file://` work + let url = Url::try_from("file://").unwrap(); + ctx.register_object_store(&url, object_store); + + // Select data from the table without any predicates (and thus no pruning) + println!("** Select data, no predicates:"); + ctx.sql("SELECT avg(id), max(text) FROM index_table") + .await? + .show() + .await?; + // the underlying parquet reader makes 10 IO requests, one for each row group + + // Now, run a query that has a predicate that our index can handle + // + // For this query, the access plan specifies skipping 8 row groups + // and scanning 2 of them. The skipped row groups are not read at all: + // + // [Skip, Skip, Scan, Skip, Skip, Skip, Skip, Scan, Skip, Skip] + // + // Note that the parquet reader makes 2 IO requests - one for the data from + // each row group. + println!("** Select data, predicate `id IN (250, 750)`"); + ctx.sql("SELECT text FROM index_table WHERE id IN (250, 750)") + .await? + .show() + .await?; + + // Finally, demonstrate scanning sub ranges within the row groups. + // Parquet's minimum decode unit is a page, so specifying ranges + // within a row group can be used to skip pages within a row group. + // + // For this query, the access plan specifies skipping all but the last row + // group and within the last row group, reading only the row with id 950 + // + // [Skip, Skip, Skip, Skip, Skip, Skip, Skip, Skip, Skip, Selection(skip 49, select 1, skip 50)] + // + // Note that the parquet reader makes a single IO request - for the data + // pages that must be decoded + // + // Note: in order to prune pages, the Page Index must be loaded and the + // ParquetExec will load it on demand if not present. To avoid a second IO + // during query, this example loaded the Page Index pre-emptively by setting + // `ArrowReader::with_page_index` in `IndexedFile::try_new` + provider.set_use_row_selection(true); + println!("** Select data, predicate `id = 950`"); + ctx.sql("SELECT text FROM index_table WHERE id = 950") + .await? + .show() + .await?; + + Ok(()) +} + +/// DataFusion `TableProvider` that uses knowledge of how data is distributed in +/// a file to prune row groups and rows from the file. +/// +/// `file1.parquet` contains values `0..1000` +#[derive(Debug)] +pub struct IndexTableProvider { + /// Where the file is stored (cleanup on drop) + #[allow(dead_code)] + tmpdir: TempDir, + /// The file that is being read. + indexed_file: IndexedFile, + /// The underlying object store + object_store: Arc, + /// if true, use row selections in addition to row group selections + use_row_selections: AtomicBool, +} +impl IndexTableProvider { + /// Create a new IndexTableProvider + /// * `object_store` - the object store implementation to use for reading files + pub fn try_new(object_store: Arc) -> Result { + let tmpdir = TempDir::new().expect("Can't make temporary directory"); + + let indexed_file = + IndexedFile::try_new(tmpdir.path().join("indexed_file.parquet"), 0..1000)?; + + Ok(Self { + indexed_file, + tmpdir, + object_store, + use_row_selections: AtomicBool::new(false), + }) + } + + /// set the value of use row selections + pub fn set_use_row_selection(&self, use_row_selections: bool) { + self.use_row_selections + .store(use_row_selections, Ordering::SeqCst); + } + + /// return the value of use row selections + pub fn use_row_selections(&self) -> bool { + self.use_row_selections.load(Ordering::SeqCst) + } + + /// convert filters like `a = 1`, `b = 2` + /// to a single predicate like `a = 1 AND b = 2` suitable for execution + fn filters_to_predicate( + &self, + state: &SessionState, + filters: &[Expr], + ) -> Result> { + let df_schema = DFSchema::try_from(self.schema())?; + + let predicate = conjunction(filters.to_vec()); + let predicate = predicate + .map(|predicate| state.create_physical_expr(predicate, &df_schema)) + .transpose()? + // if there are no filters, use a literal true to have a predicate + // that always evaluates to true we can pass to the index + .unwrap_or_else(|| datafusion_physical_expr::expressions::lit(true)); + + Ok(predicate) + } + + /// Returns a [`ParquetAccessPlan`] that specifies how to scan the + /// parquet file. + /// + /// A `ParquetAccessPlan` specifies which row groups and which rows within + /// those row groups to scan. + fn create_plan( + &self, + predicate: &Arc, + ) -> Result { + // In this example, we use the PruningPredicate's literal guarantees to + // analyze the predicate. In a real system, using + // `PruningPredicate::prune` would likely be easier to do. + let pruning_predicate = + PruningPredicate::try_new(Arc::clone(predicate), self.schema().clone())?; + + // The PruningPredicate's guarantees must all be satisfied in order for + // the predicate to possibly evaluate to true. + let guarantees = pruning_predicate.literal_guarantees(); + let Some(constants) = self.value_constants(guarantees) else { + return Ok(self.indexed_file.scan_all_plan()); + }; + + // Begin with a plan that skips all row groups. + let mut plan = self.indexed_file.scan_none_plan(); + + // determine which row groups have the values in the guarantees + for value in constants { + let ScalarValue::Int32(Some(val)) = value else { + // if we have unexpected type of constant, no pruning is possible + return Ok(self.indexed_file.scan_all_plan()); + }; + + // Since we know the values in the files are between 0..1000 and + // evenly distributed between in row groups, calculate in what row + // group this value appears and tell the parquet reader to read it + let val = *val as usize; + let num_rows_in_row_group = 1000 / plan.len(); + let row_group_index = val / num_rows_in_row_group; + plan.scan(row_group_index); + + // If we want to use row selections, which the parquet reader can + // use to skip data pages when the parquet file has a "page index" + // and the reader is configured to read it, add a row selection + if self.use_row_selections() { + let offset_in_row_group = val - row_group_index * num_rows_in_row_group; + let selection = RowSelection::from(vec![ + // skip rows before the desired row + RowSelector::skip(offset_in_row_group.saturating_sub(1)), + // select the actual row + RowSelector::select(1), + // skip any remaining rows in the group + RowSelector::skip(num_rows_in_row_group - offset_in_row_group), + ]); + + plan.scan_selection(row_group_index, selection); + } + } + + Ok(plan) + } + + /// Returns the set of constants that the `"id"` column must take in order + /// for the predicate to be true. + /// + /// If `None` is returned, we can't extract the necessary information from + /// the guarantees. + fn value_constants<'a>( + &self, + guarantees: &'a [LiteralGuarantee], + ) -> Option<&'a HashSet> { + // only handle a single guarantee for column in this example + if guarantees.len() != 1 { + return None; + } + let guarantee = guarantees.first()?; + + // Only handle IN guarantees for the "in" column + if guarantee.guarantee != Guarantee::In || guarantee.column.name() != "id" { + return None; + } + Some(&guarantee.literals) + } +} + +/// Stores information needed to scan a file +#[derive(Debug)] +struct IndexedFile { + /// File name + file_name: String, + /// The path of the file + path: PathBuf, + /// The size of the file + file_size: u64, + /// The pre-parsed parquet metadata for the file + metadata: Arc, + /// The arrow schema of the file + schema: SchemaRef, +} + +impl IndexedFile { + fn try_new(path: impl AsRef, value_range: Range) -> Result { + let path = path.as_ref(); + // write the actual file + make_demo_file(path, value_range)?; + + // Now, open the file and read its size and metadata + let file_name = path + .file_name() + .ok_or_else(|| internal_datafusion_err!("Invalid path"))? + .to_str() + .ok_or_else(|| internal_datafusion_err!("Invalid filename"))? + .to_string(); + let file_size = path.metadata()?.len(); + + let file = File::open(path).map_err(|e| { + DataFusionError::from(e).context(format!("Error opening file {path:?}")) + })?; + + let options = ArrowReaderOptions::new() + // Load the page index when reading metadata to cache + // so it is available to interpret row selections + .with_page_index(true); + let reader = + ParquetRecordBatchReaderBuilder::try_new_with_options(file, options)?; + let metadata = reader.metadata().clone(); + let schema = reader.schema().clone(); + + // canonicalize after writing the file + let path = std::fs::canonicalize(path)?; + + Ok(Self { + file_name, + path, + file_size, + metadata, + schema, + }) + } + + /// Return a `PartitionedFile` to scan the underlying file + /// + /// The returned value does not have any `ParquetAccessPlan` specified in + /// its extensions. + fn partitioned_file(&self) -> PartitionedFile { + PartitionedFile::new(self.path.display().to_string(), self.file_size) + } + + /// Return a `ParquetAccessPlan` that scans all row groups in the file + fn scan_all_plan(&self) -> ParquetAccessPlan { + ParquetAccessPlan::new_all(self.metadata.num_row_groups()) + } + + /// Return a `ParquetAccessPlan` that scans no row groups in the file + fn scan_none_plan(&self) -> ParquetAccessPlan { + ParquetAccessPlan::new_none(self.metadata.num_row_groups()) + } +} + +/// Implement the TableProvider trait for IndexTableProvider +/// so that we can query it as a table. +#[async_trait] +impl TableProvider for IndexTableProvider { + fn as_any(&self) -> &dyn Any { + self + } + + fn schema(&self) -> SchemaRef { + Arc::clone(&self.indexed_file.schema) + } + + fn table_type(&self) -> TableType { + TableType::Base + } + + async fn scan( + &self, + state: &SessionState, + projection: Option<&Vec>, + filters: &[Expr], + limit: Option, + ) -> Result> { + let indexed_file = &self.indexed_file; + let predicate = self.filters_to_predicate(state, filters)?; + + // Figure out which row groups to scan based on the predicate + let access_plan = self.create_plan(&predicate)?; + println!("{access_plan:?}"); + + let partitioned_file = indexed_file + .partitioned_file() + // provide the starting access plan to the ParquetExec by + // storing it as "extensions" on PartitionedFile + .with_extensions(Arc::new(access_plan) as _); + + // Prepare for scanning + let schema = self.schema(); + let object_store_url = ObjectStoreUrl::parse("file://")?; + let file_scan_config = FileScanConfig::new(object_store_url, schema) + .with_limit(limit) + .with_projection(projection.cloned()) + .with_file(partitioned_file); + + // Configure a factory interface to avoid re-reading the metadata for each file + let reader_factory = + CachedParquetFileReaderFactory::new(Arc::clone(&self.object_store)) + .with_file(indexed_file); + + // Finally, put it all together into a ParquetExec + Ok(ParquetExecBuilder::new(file_scan_config) + // provide the predicate so the ParquetExec can try and prune + // row groups internally + .with_predicate(predicate) + // provide the factory to create parquet reader without re-reading metadata + .with_parquet_file_reader_factory(Arc::new(reader_factory)) + .build_arc()) + } + + /// Tell DataFusion to push filters down to the scan method + fn supports_filters_pushdown( + &self, + filters: &[&Expr], + ) -> Result> { + // Inexact because the pruning can't handle all expressions and pruning + // is not done at the row level -- there may be rows in returned files + // that do not pass the filter + Ok(vec![TableProviderFilterPushDown::Inexact; filters.len()]) + } +} + +/// A custom [`ParquetFileReaderFactory`] that handles opening parquet files +/// from object storage, and uses pre-loaded metadata. + +#[derive(Debug)] +struct CachedParquetFileReaderFactory { + /// The underlying object store implementation for reading file data + object_store: Arc, + /// The parquet metadata for each file in the index, keyed by the file name + /// (e.g. `file1.parquet`) + metadata: HashMap>, +} + +impl CachedParquetFileReaderFactory { + fn new(object_store: Arc) -> Self { + Self { + object_store, + metadata: HashMap::new(), + } + } + /// Add the pre-parsed information about the file to the factor + fn with_file(mut self, indexed_file: &IndexedFile) -> Self { + self.metadata.insert( + indexed_file.file_name.clone(), + Arc::clone(&indexed_file.metadata), + ); + self + } +} + +impl ParquetFileReaderFactory for CachedParquetFileReaderFactory { + fn create_reader( + &self, + _partition_index: usize, + file_meta: FileMeta, + metadata_size_hint: Option, + _metrics: &ExecutionPlanMetricsSet, + ) -> Result> { + // for this example we ignore the partition index and metrics + // but in a real system you would likely use them to report details on + // the performance of the reader. + let filename = file_meta + .location() + .parts() + .last() + .expect("No path in location") + .as_ref() + .to_string(); + + let object_store = Arc::clone(&self.object_store); + let mut inner = ParquetObjectReader::new(object_store, file_meta.object_meta); + + if let Some(hint) = metadata_size_hint { + inner = inner.with_footer_size_hint(hint) + }; + + let metadata = self + .metadata + .get(&filename) + .expect("metadata for file not found: {filename}"); + Ok(Box::new(ParquetReaderWithCache { + filename, + metadata: Arc::clone(metadata), + inner, + })) + } +} + +/// wrapper around a ParquetObjectReader that caches metadata +struct ParquetReaderWithCache { + filename: String, + metadata: Arc, + inner: ParquetObjectReader, +} + +impl AsyncFileReader for ParquetReaderWithCache { + fn get_bytes( + &mut self, + range: Range, + ) -> BoxFuture<'_, datafusion::parquet::errors::Result> { + println!("get_bytes: {} Reading range {:?}", self.filename, range); + self.inner.get_bytes(range) + } + + fn get_byte_ranges( + &mut self, + ranges: Vec>, + ) -> BoxFuture<'_, datafusion::parquet::errors::Result>> { + println!( + "get_byte_ranges: {} Reading ranges {:?}", + self.filename, ranges + ); + self.inner.get_byte_ranges(ranges) + } + + fn get_metadata( + &mut self, + ) -> BoxFuture<'_, datafusion::parquet::errors::Result>> { + println!("get_metadata: {} returning cached metadata", self.filename); + + // return the cached metadata so the parquet reader does not read it + let metadata = self.metadata.clone(); + async move { Ok(metadata) }.boxed() + } +} + +/// Creates a new parquet file at the specified path. +/// +/// * id: Int32 +/// * text: Utf8 +/// +/// The `id` column increases sequentially from `min_value` to `max_value` +/// The `text` column is a repeating sequence of `TheTextValue{i}` +/// +/// Each row group has 100 rows +fn make_demo_file(path: impl AsRef, value_range: Range) -> Result<()> { + let path = path.as_ref(); + let file = File::create(path)?; + + let id = Int32Array::from_iter_values(value_range.clone()); + let text = + StringArray::from_iter_values(value_range.map(|i| format!("TheTextValue{i}"))); + + let batch = RecordBatch::try_from_iter(vec![ + ("id", Arc::new(id) as ArrayRef), + ("text", Arc::new(text) as ArrayRef), + ])?; + + let schema = batch.schema(); + + // enable page statistics for the tag column, + // for everything else. + let props = WriterProperties::builder() + .set_max_row_group_size(100) + // compute column chunk (per row group) statistics by default + .set_statistics_enabled(EnabledStatistics::Chunk) + // compute column page statistics for the tag column + .set_column_statistics_enabled(ColumnPath::from("tag"), EnabledStatistics::Page) + .build(); + + // write the actual values to the file + let mut writer = ArrowWriter::try_new(file, schema, Some(props))?; + writer.write(&batch)?; + writer.close()?; + + Ok(()) +} diff --git a/datafusion-examples/examples/rewrite_expr.rs b/datafusion-examples/examples/rewrite_expr.rs index d8965888eab6..06286d5d66ed 100644 --- a/datafusion-examples/examples/rewrite_expr.rs +++ b/datafusion-examples/examples/rewrite_expr.rs @@ -18,13 +18,13 @@ use arrow::datatypes::{DataType, Field, Schema, SchemaRef}; use datafusion_common::config::ConfigOptions; use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode}; -use datafusion_common::{plan_err, Result, ScalarValue}; +use datafusion_common::{plan_err, DataFusionError, Result, ScalarValue}; use datafusion_expr::{ AggregateUDF, Between, Expr, Filter, LogicalPlan, ScalarUDF, TableSource, WindowUDF, }; use datafusion_optimizer::analyzer::{Analyzer, AnalyzerRule}; -use datafusion_optimizer::optimizer::Optimizer; -use datafusion_optimizer::{utils, OptimizerConfig, OptimizerContext, OptimizerRule}; +use datafusion_optimizer::optimizer::{ApplyOrder, Optimizer}; +use datafusion_optimizer::{OptimizerConfig, OptimizerContext, OptimizerRule}; use datafusion_sql::planner::{ContextProvider, SqlToRel}; use datafusion_sql::sqlparser::dialect::PostgreSqlDialect; use datafusion_sql::sqlparser::parser::Parser; @@ -131,32 +131,28 @@ impl OptimizerRule for MyOptimizerRule { "my_optimizer_rule" } - fn try_optimize( + fn apply_order(&self) -> Option { + Some(ApplyOrder::BottomUp) + } + + fn supports_rewrite(&self) -> bool { + true + } + + fn rewrite( &self, - plan: &LogicalPlan, - config: &dyn OptimizerConfig, - ) -> Result> { - // recurse down and optimize children first - let optimized_plan = utils::optimize_children(self, plan, config)?; - match optimized_plan { - Some(LogicalPlan::Filter(filter)) => { + plan: LogicalPlan, + _config: &dyn OptimizerConfig, + ) -> Result, DataFusionError> { + match plan { + LogicalPlan::Filter(filter) => { let predicate = my_rewrite(filter.predicate.clone())?; - Ok(Some(LogicalPlan::Filter(Filter::try_new( + Ok(Transformed::yes(LogicalPlan::Filter(Filter::try_new( predicate, - filter.input, + filter.input.clone(), )?))) } - Some(optimized_plan) => Ok(Some(optimized_plan)), - None => match plan { - LogicalPlan::Filter(filter) => { - let predicate = my_rewrite(filter.predicate.clone())?; - Ok(Some(LogicalPlan::Filter(Filter::try_new( - predicate, - filter.input.clone(), - )?))) - } - _ => Ok(None), - }, + _ => Ok(Transformed::no(plan)), } } } diff --git a/datafusion/common/src/column.rs b/datafusion/common/src/column.rs index 3e2bc0ad7c3a..e36a4f890644 100644 --- a/datafusion/common/src/column.rs +++ b/datafusion/common/src/column.rs @@ -127,6 +127,13 @@ impl Column { }) } + /// return the column's name. + /// + /// Note: This ignores the relation and returns the column name only. + pub fn name(&self) -> &str { + &self.name + } + /// Serialize column into a flat name string pub fn flat_name(&self) -> String { match &self.relation { diff --git a/datafusion/common/src/config.rs b/datafusion/common/src/config.rs index 1c431d04cd35..47da14574c5d 100644 --- a/datafusion/common/src/config.rs +++ b/datafusion/common/src/config.rs @@ -1393,6 +1393,13 @@ pub struct TableParquetOptions { pub key_value_metadata: HashMap>, } +impl TableParquetOptions { + /// Return new default TableParquetOptions + pub fn new() -> Self { + Self::default() + } +} + impl ConfigField for TableParquetOptions { fn visit(&self, v: &mut V, key_prefix: &str, description: &'static str) { self.global.visit(v, key_prefix, description); @@ -1559,6 +1566,7 @@ config_namespace! { pub delimiter: u8, default = b',' pub quote: u8, default = b'"' pub escape: Option, default = None + pub double_quote: Option, default = None pub compression: CompressionTypeVariant, default = CompressionTypeVariant::UNCOMPRESSED pub schema_infer_max_rec: usize, default = 100 pub date_format: Option, default = None @@ -1624,6 +1632,13 @@ impl CsvOptions { self } + /// Set true to indicate that the CSV quotes should be doubled. + /// - default to true + pub fn with_double_quote(mut self, double_quote: bool) -> Self { + self.double_quote = Some(double_quote); + self + } + /// Set a `CompressionTypeVariant` of CSV /// - defaults to `CompressionTypeVariant::UNCOMPRESSED` pub fn with_file_compression_type( @@ -1668,6 +1683,7 @@ pub enum FormatOptions { AVRO, ARROW, } + impl Display for FormatOptions { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let out = match self { diff --git a/datafusion/common/src/file_options/csv_writer.rs b/datafusion/common/src/file_options/csv_writer.rs index 4f948a29adc4..5792cfdba9e0 100644 --- a/datafusion/common/src/file_options/csv_writer.rs +++ b/datafusion/common/src/file_options/csv_writer.rs @@ -69,6 +69,12 @@ impl TryFrom<&CsvOptions> for CsvWriterOptions { if let Some(v) = &value.null_value { builder = builder.with_null(v.into()) } + if let Some(v) = &value.escape { + builder = builder.with_escape(*v) + } + if let Some(v) = &value.double_quote { + builder = builder.with_double_quote(*v) + } Ok(CsvWriterOptions { writer_options: builder, compression: value.compression, diff --git a/datafusion/core/src/dataframe/mod.rs b/datafusion/core/src/dataframe/mod.rs index b5c58eff577c..d55caf1404a5 100644 --- a/datafusion/core/src/dataframe/mod.rs +++ b/datafusion/core/src/dataframe/mod.rs @@ -244,6 +244,42 @@ impl DataFrame { }) } + /// Returns a new DataFrame containing all columns except the specified columns. + /// + /// ``` + /// # use datafusion::prelude::*; + /// # use datafusion::error::Result; + /// # #[tokio::main] + /// # async fn main() -> Result<()> { + /// let ctx = SessionContext::new(); + /// let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?; + /// let df = df.drop_columns(&["a"])?; + /// # Ok(()) + /// # } + /// ``` + pub fn drop_columns(self, columns: &[&str]) -> Result { + let fields_to_drop = columns + .iter() + .map(|name| { + self.plan + .schema() + .qualified_field_with_unqualified_name(name) + }) + .filter(|r| r.is_ok()) + .collect::>>()?; + let expr: Vec = self + .plan + .schema() + .fields() + .into_iter() + .enumerate() + .map(|(idx, _)| self.plan.schema().qualified_field(idx)) + .filter(|(qualifier, f)| !fields_to_drop.contains(&(*qualifier, f))) + .map(|(qualifier, field)| Expr::Column(Column::from((qualifier, field)))) + .collect(); + self.select(expr) + } + /// Expand each list element of a column to multiple rows. #[deprecated(since = "37.0.0", note = "use unnest_columns instead")] pub fn unnest_column(self, column: &str) -> Result { @@ -486,6 +522,38 @@ impl DataFrame { }) } + /// Return a new `DataFrame` with duplicated rows removed as per the specified expression list + /// according to the provided sorting expressions grouped by the `DISTINCT ON` clause + /// expressions. + /// + /// # Example + /// ``` + /// # use datafusion::prelude::*; + /// # use datafusion::error::Result; + /// # #[tokio::main] + /// # async fn main() -> Result<()> { + /// let ctx = SessionContext::new(); + /// let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await? + /// // Return a single row (a, b) for each distinct value of a + /// .distinct_on(vec![col("a")], vec![col("a"), col("b")], None)?; + /// # Ok(()) + /// # } + /// ``` + pub fn distinct_on( + self, + on_expr: Vec, + select_expr: Vec, + sort_expr: Option>, + ) -> Result { + let plan = LogicalPlanBuilder::from(self.plan) + .distinct_on(on_expr, select_expr, sort_expr)? + .build()?; + Ok(DataFrame { + session_state: self.session_state, + plan, + }) + } + /// Return a new `DataFrame` that has statistics for a DataFrame. /// /// Only summarizes numeric datatypes at the moment and returns nulls for @@ -1799,6 +1867,139 @@ mod tests { Ok(()) } + #[tokio::test] + async fn drop_columns() -> Result<()> { + // build plan using Table API + let t = test_table().await?; + let t2 = t.drop_columns(&["c2", "c11"])?; + let plan = t2.plan.clone(); + + // build query using SQL + let sql_plan = create_plan( + "SELECT c1,c3,c4,c5,c6,c7,c8,c9,c10,c12,c13 FROM aggregate_test_100", + ) + .await?; + + // the two plans should be identical + assert_same_plan(&plan, &sql_plan); + + Ok(()) + } + + #[tokio::test] + async fn drop_columns_with_duplicates() -> Result<()> { + // build plan using Table API + let t = test_table().await?; + let t2 = t.drop_columns(&["c2", "c11", "c2", "c2"])?; + let plan = t2.plan.clone(); + + // build query using SQL + let sql_plan = create_plan( + "SELECT c1,c3,c4,c5,c6,c7,c8,c9,c10,c12,c13 FROM aggregate_test_100", + ) + .await?; + + // the two plans should be identical + assert_same_plan(&plan, &sql_plan); + + Ok(()) + } + + #[tokio::test] + async fn drop_columns_with_nonexistent_columns() -> Result<()> { + // build plan using Table API + let t = test_table().await?; + let t2 = t.drop_columns(&["canada", "c2", "rocks"])?; + let plan = t2.plan.clone(); + + // build query using SQL + let sql_plan = create_plan( + "SELECT c1,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13 FROM aggregate_test_100", + ) + .await?; + + // the two plans should be identical + assert_same_plan(&plan, &sql_plan); + + Ok(()) + } + + #[tokio::test] + async fn drop_columns_with_empty_array() -> Result<()> { + // build plan using Table API + let t = test_table().await?; + let t2 = t.drop_columns(&[])?; + let plan = t2.plan.clone(); + + // build query using SQL + let sql_plan = create_plan( + "SELECT c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13 FROM aggregate_test_100", + ) + .await?; + + // the two plans should be identical + assert_same_plan(&plan, &sql_plan); + + Ok(()) + } + + #[tokio::test] + async fn drop_with_quotes() -> Result<()> { + // define data with a column name that has a "." in it: + let array1: Int32Array = [1, 10].into_iter().collect(); + let array2: Int32Array = [2, 11].into_iter().collect(); + let batch = RecordBatch::try_from_iter(vec![ + ("f\"c1", Arc::new(array1) as _), + ("f\"c2", Arc::new(array2) as _), + ])?; + + let ctx = SessionContext::new(); + ctx.register_batch("t", batch)?; + + let df = ctx.table("t").await?.drop_columns(&["f\"c1"])?; + + let df_results = df.collect().await?; + + assert_batches_sorted_eq!( + [ + "+------+", + "| f\"c2 |", + "+------+", + "| 2 |", + "| 11 |", + "+------+" + ], + &df_results + ); + + Ok(()) + } + + #[tokio::test] + async fn drop_with_periods() -> Result<()> { + // define data with a column name that has a "." in it: + let array1: Int32Array = [1, 10].into_iter().collect(); + let array2: Int32Array = [2, 11].into_iter().collect(); + let batch = RecordBatch::try_from_iter(vec![ + ("f.c1", Arc::new(array1) as _), + ("f.c2", Arc::new(array2) as _), + ])?; + + let ctx = SessionContext::new(); + ctx.register_batch("t", batch)?; + + let df = ctx.table("t").await?.drop_columns(&["f.c1"])?; + + let df_results = df.collect().await?; + + assert_batches_sorted_eq!( + ["+------+", "| f.c2 |", "+------+", "| 2 |", "| 11 |", "+------+"], + &df_results + ); + + Ok(()) + } + #[tokio::test] async fn aggregate() -> Result<()> { // build plan using DataFrame API @@ -1817,7 +2018,7 @@ mod tests { assert_batches_sorted_eq!( ["+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+", - "| c1 | MIN(aggregate_test_100.c12) | MAX(aggregate_test_100.c12) | AVG(aggregate_test_100.c12) | sum(aggregate_test_100.c12) | COUNT(aggregate_test_100.c12) | COUNT(DISTINCT aggregate_test_100.c12) |", + "| c1 | MIN(aggregate_test_100.c12) | MAX(aggregate_test_100.c12) | AVG(aggregate_test_100.c12) | sum(aggregate_test_100.c12) | count(aggregate_test_100.c12) | count(DISTINCT aggregate_test_100.c12) |", "+----+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-------------------------------+----------------------------------------+", "| a | 0.02182578039211991 | 0.9800193410444061 | 0.48754517466109415 | 10.238448667882977 | 21 | 21 |", "| b | 0.04893135681998029 | 0.9185813970744787 | 0.41040709263815384 | 7.797734760124923 | 19 | 19 |", @@ -2190,6 +2391,91 @@ mod tests { Ok(()) } + #[tokio::test] + async fn test_distinct_on() -> Result<()> { + let t = test_table().await?; + let plan = t + .distinct_on(vec![col("c1")], vec![col("aggregate_test_100.c1")], None) + .unwrap(); + + let sql_plan = + create_plan("select distinct on (c1) c1 from aggregate_test_100").await?; + + assert_same_plan(&plan.plan.clone(), &sql_plan); + + let df_results = plan.clone().collect().await?; + + #[rustfmt::skip] + assert_batches_sorted_eq!( + ["+----+", + "| c1 |", + "+----+", + "| a |", + "| b |", + "| c |", + "| d |", + "| e |", + "+----+"], + &df_results + ); + + Ok(()) + } + + #[tokio::test] + async fn test_distinct_on_sort_by() -> Result<()> { + let t = test_table().await?; + let plan = t + .select(vec![col("c1")]) + .unwrap() + .distinct_on( + vec![col("c1")], + vec![col("c1")], + Some(vec![col("c1").sort(true, true)]), + ) + .unwrap() + .sort(vec![col("c1").sort(true, true)]) + .unwrap(); + + let df_results = plan.clone().collect().await?; + + #[rustfmt::skip] + assert_batches_sorted_eq!( + ["+----+", + "| c1 |", + "+----+", + "| a |", + "| b |", + "| c |", + "| d |", + "| e |", + "+----+"], + &df_results + ); + + Ok(()) + } + + #[tokio::test] + async fn test_distinct_on_sort_by_unprojected() -> Result<()> { + let t = test_table().await?; + let err = t + .select(vec![col("c1")]) + .unwrap() + .distinct_on( + vec![col("c1")], + vec![col("c1")], + Some(vec![col("c1").sort(true, true)]), + ) + .unwrap() + // try to sort on some value not present in input to distinct + .sort(vec![col("c2").sort(true, true)]) + .unwrap_err(); + assert_eq!(err.strip_backtrace(), "Error during planning: For SELECT DISTINCT, ORDER BY expressions c2 must appear in select list"); + + Ok(()) + } + #[tokio::test] async fn join() -> Result<()> { let left = test_table().await?.select_columns(&["c1", "c2"])?; @@ -2885,7 +3171,7 @@ mod tests { let sql = r#" SELECT - COUNT(1) + count(1) FROM test GROUP BY diff --git a/datafusion/core/src/datasource/physical_plan/parquet/access_plan.rs b/datafusion/core/src/datasource/physical_plan/parquet/access_plan.rs index e15e907cd9b8..ea3030664b7b 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/access_plan.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/access_plan.rs @@ -139,6 +139,11 @@ impl ParquetAccessPlan { self.set(idx, RowGroupAccess::Skip); } + /// scan the i-th row group + pub fn scan(&mut self, idx: usize) { + self.set(idx, RowGroupAccess::Scan); + } + /// Return true if the i-th row group should be scanned pub fn should_scan(&self, idx: usize) -> bool { self.row_groups[idx].should_scan() diff --git a/datafusion/core/src/datasource/physical_plan/parquet/mod.rs b/datafusion/core/src/datasource/physical_plan/parquet/mod.rs index ec21c5504c69..959e50fac81d 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/mod.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/mod.rs @@ -186,9 +186,9 @@ pub use writer::plan_to_parquet; /// let exec = ParquetExec::builder(file_scan_config).build(); /// ``` /// -/// For a complete example, see the [`parquet_index_advanced` example]). +/// For a complete example, see the [`advanced_parquet_index` example]). /// -/// [`parquet_index_advanced` example]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/parquet_index_advanced.rs +/// [`parquet_index_advanced` example]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_parquet_index.rs /// /// # Execution Overview /// diff --git a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs index e590f372253c..da8b793a5c29 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/row_groups.rs @@ -54,7 +54,7 @@ impl RowGroupAccessPlanFilter { Self { access_plan } } - /// Return true if there are no row groups to scan + /// Return true if there are no row groups pub fn is_empty(&self) -> bool { self.access_plan.is_empty() } diff --git a/datafusion/core/src/datasource/physical_plan/parquet/statistics.rs b/datafusion/core/src/datasource/physical_plan/parquet/statistics.rs index 3be060ce6180..43483a0b6659 100644 --- a/datafusion/core/src/datasource/physical_plan/parquet/statistics.rs +++ b/datafusion/core/src/datasource/physical_plan/parquet/statistics.rs @@ -549,6 +549,18 @@ macro_rules! make_data_page_stats_iterator { }; } +make_data_page_stats_iterator!( + MinBooleanDataPageStatsIterator, + |x: &PageIndex| { x.min }, + Index::BOOLEAN, + bool +); +make_data_page_stats_iterator!( + MaxBooleanDataPageStatsIterator, + |x: &PageIndex| { x.max }, + Index::BOOLEAN, + bool +); make_data_page_stats_iterator!( MinInt32DataPageStatsIterator, |x: &PageIndex| { x.min }, @@ -613,6 +625,15 @@ macro_rules! get_data_page_statistics { ($stat_type_prefix: ident, $data_type: ident, $iterator: ident) => { paste! { match $data_type { + Some(DataType::Boolean) => Ok(Arc::new( + BooleanArray::from_iter( + [<$stat_type_prefix BooleanDataPageStatsIterator>]::new($iterator) + .flatten() + // BooleanArray::from_iter required a sized iterator, so collect into Vec first + .collect::>() + .into_iter() + ) + )), Some(DataType::UInt8) => Ok(Arc::new( UInt8Array::from_iter( [<$stat_type_prefix Int32DataPageStatsIterator>]::new($iterator) @@ -778,6 +799,11 @@ where { let iter = iterator.flat_map(|(len, index)| match index { Index::NONE => vec![None; len], + Index::BOOLEAN(native_index) => native_index + .indexes + .iter() + .map(|x| x.null_count.map(|x| x as u64)) + .collect::>(), Index::INT32(native_index) => native_index .indexes .iter() diff --git a/datafusion/core/src/execution/context/csv.rs b/datafusion/core/src/execution/context/csv.rs index aa1a8b512f7e..08e93cb61305 100644 --- a/datafusion/core/src/execution/context/csv.rs +++ b/datafusion/core/src/execution/context/csv.rs @@ -110,12 +110,12 @@ mod tests { ) .await?; let results = - plan_and_collect(&ctx, "SELECT sum(c1), sum(c2), COUNT(*) FROM test").await?; + plan_and_collect(&ctx, "SELECT sum(c1), sum(c2), count(*) FROM test").await?; assert_eq!(results.len(), 1); let expected = [ "+--------------+--------------+----------+", - "| sum(test.c1) | sum(test.c2) | COUNT(*) |", + "| sum(test.c1) | sum(test.c2) | count(*) |", "+--------------+--------------+----------+", "| 10 | 110 | 20 |", "+--------------+--------------+----------+", diff --git a/datafusion/core/src/execution/context/mod.rs b/datafusion/core/src/execution/context/mod.rs index 6fa83d3d931e..c44e9742607e 100644 --- a/datafusion/core/src/execution/context/mod.rs +++ b/datafusion/core/src/execution/context/mod.rs @@ -75,6 +75,7 @@ use url::Url; pub use datafusion_execution::config::SessionConfig; pub use datafusion_execution::TaskContext; pub use datafusion_expr::execution_props::ExecutionProps; +use datafusion_optimizer::AnalyzerRule; mod avro; mod csv; @@ -331,6 +332,15 @@ impl SessionContext { self } + /// Adds an analyzer rule to the `SessionState` in the current `SessionContext`. + pub fn add_analyzer_rule( + self, + analyzer_rule: Arc, + ) -> Self { + self.state.write().add_analyzer_rule(analyzer_rule); + self + } + /// Registers an [`ObjectStore`] to be used with a specific URL prefix. /// /// See [`RuntimeEnv::register_object_store`] for more details. diff --git a/datafusion/core/src/execution/session_state.rs b/datafusion/core/src/execution/session_state.rs index 1df77a1f9e0b..e9441a89cd5f 100644 --- a/datafusion/core/src/execution/session_state.rs +++ b/datafusion/core/src/execution/session_state.rs @@ -384,9 +384,9 @@ impl SessionState { /// Add `analyzer_rule` to the end of the list of /// [`AnalyzerRule`]s used to rewrite queries. pub fn add_analyzer_rule( - mut self, + &mut self, analyzer_rule: Arc, - ) -> Self { + ) -> &Self { self.analyzer.rules.push(analyzer_rule); self } diff --git a/datafusion/core/src/physical_optimizer/aggregate_statistics.rs b/datafusion/core/src/physical_optimizer/aggregate_statistics.rs index ca1582bcb34f..7e9aec9e5e4c 100644 --- a/datafusion/core/src/physical_optimizer/aggregate_statistics.rs +++ b/datafusion/core/src/physical_optimizer/aggregate_statistics.rs @@ -141,7 +141,7 @@ fn take_optimizable_column_and_table_count( ) -> Option<(ScalarValue, String)> { let col_stats = &stats.column_statistics; if let Some(agg_expr) = agg_expr.as_any().downcast_ref::() { - if agg_expr.fun().name() == "COUNT" && !agg_expr.is_distinct() { + if agg_expr.fun().name() == "count" && !agg_expr.is_distinct() { if let Precision::Exact(num_rows) = stats.num_rows { let exprs = agg_expr.expressions(); if exprs.len() == 1 { diff --git a/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs b/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs index b57f36f728d7..940b09131a77 100644 --- a/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs +++ b/datafusion/core/src/physical_optimizer/combine_partial_final_agg.rs @@ -27,8 +27,7 @@ use crate::physical_plan::ExecutionPlan; use datafusion_common::config::ConfigOptions; use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode}; -use datafusion_physical_expr::expressions::Column; -use datafusion_physical_expr::{AggregateExpr, PhysicalExpr}; +use datafusion_physical_expr::{physical_exprs_equal, AggregateExpr, PhysicalExpr}; /// CombinePartialFinalAggregate optimizer rule combines the adjacent Partial and Final AggregateExecs /// into a Single AggregateExec if their grouping exprs and aggregate exprs equal. @@ -132,19 +131,23 @@ type GroupExprsRef<'a> = ( &'a [Option>], ); -type GroupExprs = ( - PhysicalGroupBy, - Vec>, - Vec>>, -); - fn can_combine(final_agg: GroupExprsRef, partial_agg: GroupExprsRef) -> bool { - let (final_group_by, final_aggr_expr, final_filter_expr) = - normalize_group_exprs(final_agg); - let (input_group_by, input_aggr_expr, input_filter_expr) = - normalize_group_exprs(partial_agg); - - final_group_by.eq(&input_group_by) + let (final_group_by, final_aggr_expr, final_filter_expr) = final_agg; + let (input_group_by, input_aggr_expr, input_filter_expr) = partial_agg; + + // Compare output expressions of the partial, and input expressions of the final operator. + physical_exprs_equal( + &input_group_by.output_exprs(), + &final_group_by.input_exprs(), + ) && input_group_by.groups() == final_group_by.groups() + && input_group_by.null_expr().len() == final_group_by.null_expr().len() + && input_group_by + .null_expr() + .iter() + .zip(final_group_by.null_expr().iter()) + .all(|((lhs_expr, lhs_str), (rhs_expr, rhs_str))| { + lhs_expr.eq(rhs_expr) && lhs_str == rhs_str + }) && final_aggr_expr.len() == input_aggr_expr.len() && final_aggr_expr .iter() @@ -160,41 +163,6 @@ fn can_combine(final_agg: GroupExprsRef, partial_agg: GroupExprsRef) -> bool { ) } -// To compare the group expressions between the final and partial aggregations, need to discard all the column indexes and compare -fn normalize_group_exprs(group_exprs: GroupExprsRef) -> GroupExprs { - let (group, agg, filter) = group_exprs; - let new_group_expr = group - .expr() - .iter() - .map(|(expr, name)| (discard_column_index(expr.clone()), name.clone())) - .collect::>(); - let new_group = PhysicalGroupBy::new( - new_group_expr, - group.null_expr().to_vec(), - group.groups().to_vec(), - ); - (new_group, agg.to_vec(), filter.to_vec()) -} - -fn discard_column_index(group_expr: Arc) -> Arc { - group_expr - .clone() - .transform(|expr| { - let normalized_form: Option> = - match expr.as_any().downcast_ref::() { - Some(column) => Some(Arc::new(Column::new(column.name(), 0))), - None => None, - }; - Ok(if let Some(normalized_form) = normalized_form { - Transformed::yes(normalized_form) - } else { - Transformed::no(expr) - }) - }) - .data() - .unwrap_or(group_expr) -} - #[cfg(test)] mod tests { use super::*; diff --git a/datafusion/core/src/physical_optimizer/pruning.rs b/datafusion/core/src/physical_optimizer/pruning.rs index 4dd62a894518..98aff0d65898 100644 --- a/datafusion/core/src/physical_optimizer/pruning.rs +++ b/datafusion/core/src/physical_optimizer/pruning.rs @@ -471,8 +471,10 @@ pub struct PruningPredicate { /// Original physical predicate from which this predicate expr is derived /// (required for serialization) orig_expr: Arc, - /// [`LiteralGuarantee`]s that are used to try and prove a predicate can not - /// possibly evaluate to `true`. + /// [`LiteralGuarantee`]s used to try and prove a predicate can not possibly + /// evaluate to `true`. + /// + /// See [`PruningPredicate::literal_guarantees`] for more details. literal_guarantees: Vec, } @@ -595,6 +597,10 @@ impl PruningPredicate { } /// Returns a reference to the literal guarantees + /// + /// Note that **All** `LiteralGuarantee`s must be satisfied for the + /// expression to possibly be `true`. If any is not satisfied, the + /// expression is guaranteed to be `null` or `false`. pub fn literal_guarantees(&self) -> &[LiteralGuarantee] { &self.literal_guarantees } diff --git a/datafusion/core/src/physical_planner.rs b/datafusion/core/src/physical_planner.rs index 404bcbb2e7d4..b539544d8372 100644 --- a/datafusion/core/src/physical_planner.rs +++ b/datafusion/core/src/physical_planner.rs @@ -1918,6 +1918,7 @@ pub fn create_aggregate_expr_and_maybe_filter( // unpack (nested) aliased logical expressions, e.g. "sum(col) as total" let (name, e) = match e { Expr::Alias(Alias { expr, name, .. }) => (name.clone(), expr.as_ref()), + Expr::AggregateFunction(_) => (e.display_name().unwrap_or(physical_name(e)?), e), _ => (physical_name(e)?, e), }; diff --git a/datafusion/core/tests/custom_sources_cases/mod.rs b/datafusion/core/tests/custom_sources_cases/mod.rs index e8ead01d2ee4..7901998ebd09 100644 --- a/datafusion/core/tests/custom_sources_cases/mod.rs +++ b/datafusion/core/tests/custom_sources_cases/mod.rs @@ -278,7 +278,7 @@ async fn optimizers_catch_all_statistics() { let expected = RecordBatch::try_new( Arc::new(Schema::new(vec![ - Field::new("COUNT(*)", DataType::Int64, false), + Field::new("count(*)", DataType::Int64, false), Field::new("MIN(test.c1)", DataType::Int32, false), Field::new("MAX(test.c1)", DataType::Int32, false), ])), diff --git a/datafusion/core/tests/data/double_quote.csv b/datafusion/core/tests/data/double_quote.csv new file mode 100644 index 000000000000..95a6f0c4077a --- /dev/null +++ b/datafusion/core/tests/data/double_quote.csv @@ -0,0 +1,5 @@ +c1,c2 +id0,"""value0""" +id1,"""value1""" +id2,"""value2""" +id3,"""value3""" diff --git a/datafusion/core/tests/dataframe/mod.rs b/datafusion/core/tests/dataframe/mod.rs index fa364c5f2a65..c018ebec4b63 100644 --- a/datafusion/core/tests/dataframe/mod.rs +++ b/datafusion/core/tests/dataframe/mod.rs @@ -170,7 +170,7 @@ async fn test_count_wildcard_on_window() -> Result<()> { let ctx = create_join_context()?; let sql_results = ctx - .sql("select COUNT(*) OVER(ORDER BY a DESC RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING) from t1") + .sql("select count(*) OVER(ORDER BY a DESC RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING) from t1") .await? .explain(false, false)? .collect() @@ -211,7 +211,7 @@ async fn test_count_wildcard_on_aggregate() -> Result<()> { let sql_results = ctx .sql("select count(*) from t1") .await? - .select(vec![col("COUNT(*)")])? + .select(vec![col("count(*)")])? .explain(false, false)? .collect() .await?; @@ -604,7 +604,7 @@ async fn test_grouping_sets() -> Result<()> { let expected = vec![ "+-----------+-----+---------------+", - "| a | b | COUNT(test.a) |", + "| a | b | count(test.a) |", "+-----------+-----+---------------+", "| | 100 | 1 |", "| | 10 | 2 |", @@ -645,7 +645,7 @@ async fn test_grouping_sets_count() -> Result<()> { let expected = vec![ "+----+----+-----------------+", - "| c1 | c2 | COUNT(Int32(1)) |", + "| c1 | c2 | count(Int32(1)) |", "+----+----+-----------------+", "| | 5 | 14 |", "| | 4 | 23 |", @@ -1233,7 +1233,7 @@ async fn unnest_aggregate_columns() -> Result<()> { .await?; let expected = [ r#"+-------------+"#, - r#"| COUNT(tags) |"#, + r#"| count(tags) |"#, r#"+-------------+"#, r#"| 9 |"#, r#"+-------------+"#, diff --git a/datafusion/core/tests/fuzz_cases/join_fuzz.rs b/datafusion/core/tests/fuzz_cases/join_fuzz.rs index 5fdf02079496..17dbf3a0ff28 100644 --- a/datafusion/core/tests/fuzz_cases/join_fuzz.rs +++ b/datafusion/core/tests/fuzz_cases/join_fuzz.rs @@ -215,10 +215,6 @@ async fn test_semi_join_1k() { .await } -// The test is flaky -// https://github.com/apache/datafusion/issues/10886 -// SMJ produces 1 more row in the output -#[ignore] #[tokio::test] async fn test_semi_join_1k_filtered() { JoinFuzzTestCase::new( @@ -442,18 +438,45 @@ impl JoinFuzzTestCase { if debug { println!("The debug is ON. Input data will be saved"); - let out_dir_name = &format!("fuzz_test_debug_batch_size_{batch_size}"); - Self::save_as_parquet(&self.input1, out_dir_name, "input1"); - Self::save_as_parquet(&self.input2, out_dir_name, "input2"); + let fuzz_debug = "fuzz_test_debug"; + std::fs::remove_dir_all(fuzz_debug).unwrap_or(()); + std::fs::create_dir_all(fuzz_debug).unwrap(); + let out_dir_name = &format!("{fuzz_debug}/batch_size_{batch_size}"); + Self::save_partitioned_batches_as_parquet( + &self.input1, + out_dir_name, + "input1", + ); + Self::save_partitioned_batches_as_parquet( + &self.input2, + out_dir_name, + "input2", + ); if join_tests.contains(&JoinTestType::NljHj) { - Self::save_as_parquet(&nlj_collected, out_dir_name, "nlj"); - Self::save_as_parquet(&hj_collected, out_dir_name, "hj"); + Self::save_partitioned_batches_as_parquet( + &nlj_collected, + out_dir_name, + "nlj", + ); + Self::save_partitioned_batches_as_parquet( + &hj_collected, + out_dir_name, + "hj", + ); } if join_tests.contains(&JoinTestType::HjSmj) { - Self::save_as_parquet(&hj_collected, out_dir_name, "hj"); - Self::save_as_parquet(&smj_collected, out_dir_name, "smj"); + Self::save_partitioned_batches_as_parquet( + &hj_collected, + out_dir_name, + "hj", + ); + Self::save_partitioned_batches_as_parquet( + &smj_collected, + out_dir_name, + "smj", + ); } } @@ -527,11 +550,26 @@ impl JoinFuzzTestCase { /// as a parquet files preserving partitioning. /// Once the data is saved it is possible to run a custom test on top of the saved data and debug /// + /// #[tokio::test] + /// async fn test1() { + /// let left: Vec = JoinFuzzTestCase::load_partitioned_batches_from_parquet("fuzz_test_debug/batch_size_2/input1").await.unwrap(); + /// let right: Vec = JoinFuzzTestCase::load_partitioned_batches_from_parquet("fuzz_test_debug/batch_size_2/input2").await.unwrap(); + /// + /// JoinFuzzTestCase::new( + /// left, + /// right, + /// JoinType::LeftSemi, + /// Some(Box::new(col_lt_col_filter)), + /// ) + /// .run_test(&[JoinTestType::HjSmj], false) + /// .await + /// } + /// /// let ctx: SessionContext = SessionContext::new(); /// let df = ctx /// .read_parquet( /// "/tmp/input1/*.parquet", - /// ParquetReadOptions::default(), + /// datafusion::prelude::ParquetReadOptions::default(), /// ) /// .await /// .unwrap(); @@ -540,7 +578,7 @@ impl JoinFuzzTestCase { /// let df = ctx /// .read_parquet( /// "/tmp/input2/*.parquet", - /// ParquetReadOptions::default(), + /// datafusion::prelude::ParquetReadOptions::default(), /// ) /// .await /// .unwrap(); @@ -554,8 +592,11 @@ impl JoinFuzzTestCase { /// ) /// .run_test() /// .await - /// } - fn save_as_parquet(input: &[RecordBatch], output_dir: &str, out_name: &str) { + fn save_partitioned_batches_as_parquet( + input: &[RecordBatch], + output_dir: &str, + out_name: &str, + ) { let out_path = &format!("{output_dir}/{out_name}"); std::fs::remove_dir_all(out_path).unwrap_or(()); std::fs::create_dir_all(out_path).unwrap(); @@ -576,6 +617,39 @@ impl JoinFuzzTestCase { println!("The data {out_name} saved as parquet into {out_path}"); } + + /// Read parquet files preserving partitions, i.e. 1 file -> 1 partition + /// Files can be of different sizes + /// The method can be useful to read partitions have been saved by `save_partitioned_batches_as_parquet` + /// for test debugging purposes + #[allow(dead_code)] + async fn load_partitioned_batches_from_parquet( + dir: &str, + ) -> std::io::Result> { + let ctx: SessionContext = SessionContext::new(); + let mut batches: Vec = vec![]; + + for entry in std::fs::read_dir(dir)? { + let entry = entry?; + let path = entry.path(); + + if path.is_file() { + let mut batch = ctx + .read_parquet( + path.to_str().unwrap(), + datafusion::prelude::ParquetReadOptions::default(), + ) + .await + .unwrap() + .collect() + .await + .unwrap(); + + batches.append(&mut batch); + } + } + Ok(batches) + } } /// Return randomly sized record batches with: diff --git a/datafusion/core/tests/parquet/arrow_statistics.rs b/datafusion/core/tests/parquet/arrow_statistics.rs index ddb39fce4076..cd6985b311c3 100644 --- a/datafusion/core/tests/parquet/arrow_statistics.rs +++ b/datafusion/core/tests/parquet/arrow_statistics.rs @@ -1953,7 +1953,7 @@ async fn test_boolean() { expected_null_counts: UInt64Array::from(vec![1, 0]), expected_row_counts: Some(UInt64Array::from(vec![5, 5])), column_name: "bool", - check: Check::RowGroup, + check: Check::Both, } .run(); } diff --git a/datafusion/core/tests/path_partition.rs b/datafusion/core/tests/path_partition.rs index bfc5b59f0952..7e7544bdb7c0 100644 --- a/datafusion/core/tests/path_partition.rs +++ b/datafusion/core/tests/path_partition.rs @@ -120,7 +120,7 @@ async fn parquet_distinct_partition_col() -> Result<()> { //3. limit is not contained within a single partition //The id column is included to ensure that the parquet file is actually scanned. let results = ctx - .sql("SELECT COUNT(*) as num_rows_per_month, month, MAX(id) from t group by month order by num_rows_per_month desc") + .sql("SELECT count(*) as num_rows_per_month, month, MAX(id) from t group by month order by num_rows_per_month desc") .await? .collect() .await?; @@ -339,7 +339,7 @@ async fn csv_grouping_by_partition() -> Result<()> { let expected = [ "+------------+----------+----------------------+", - "| date | COUNT(*) | COUNT(DISTINCT t.c1) |", + "| date | count(*) | count(DISTINCT t.c1) |", "+------------+----------+----------------------+", "| 2021-10-26 | 100 | 5 |", "| 2021-10-27 | 100 | 5 |", diff --git a/datafusion/core/tests/sql/aggregates.rs b/datafusion/core/tests/sql/aggregates.rs index 84b791a3de05..c3139f6fcdfb 100644 --- a/datafusion/core/tests/sql/aggregates.rs +++ b/datafusion/core/tests/sql/aggregates.rs @@ -69,12 +69,12 @@ async fn csv_query_array_agg_distinct() -> Result<()> { #[tokio::test] async fn count_partitioned() -> Result<()> { let results = - execute_with_partition("SELECT COUNT(c1), COUNT(c2) FROM test", 4).await?; + execute_with_partition("SELECT count(c1), count(c2) FROM test", 4).await?; assert_eq!(results.len(), 1); let expected = [ "+----------------+----------------+", - "| COUNT(test.c1) | COUNT(test.c2) |", + "| count(test.c1) | count(test.c2) |", "+----------------+----------------+", "| 40 | 40 |", "+----------------+----------------+", @@ -86,11 +86,11 @@ async fn count_partitioned() -> Result<()> { #[tokio::test] async fn count_aggregated() -> Result<()> { let results = - execute_with_partition("SELECT c1, COUNT(c2) FROM test GROUP BY c1", 4).await?; + execute_with_partition("SELECT c1, count(c2) FROM test GROUP BY c1", 4).await?; let expected = [ "+----+----------------+", - "| c1 | COUNT(test.c2) |", + "| c1 | count(test.c2) |", "+----+----------------+", "| 0 | 10 |", "| 1 | 10 |", @@ -105,14 +105,14 @@ async fn count_aggregated() -> Result<()> { #[tokio::test] async fn count_aggregated_cube() -> Result<()> { let results = execute_with_partition( - "SELECT c1, c2, COUNT(c3) FROM test GROUP BY CUBE (c1, c2) ORDER BY c1, c2", + "SELECT c1, c2, count(c3) FROM test GROUP BY CUBE (c1, c2) ORDER BY c1, c2", 4, ) .await?; let expected = vec![ "+----+----+----------------+", - "| c1 | c2 | COUNT(test.c3) |", + "| c1 | c2 | count(test.c3) |", "+----+----+----------------+", "| | | 40 |", "| | 1 | 4 |", @@ -222,15 +222,15 @@ async fn run_count_distinct_integers_aggregated_scenario( " SELECT c_group, - COUNT(c_uint64), - COUNT(DISTINCT c_int8), - COUNT(DISTINCT c_int16), - COUNT(DISTINCT c_int32), - COUNT(DISTINCT c_int64), - COUNT(DISTINCT c_uint8), - COUNT(DISTINCT c_uint16), - COUNT(DISTINCT c_uint32), - COUNT(DISTINCT c_uint64) + count(c_uint64), + count(DISTINCT c_int8), + count(DISTINCT c_int16), + count(DISTINCT c_int32), + count(DISTINCT c_int64), + count(DISTINCT c_uint8), + count(DISTINCT c_uint16), + count(DISTINCT c_uint32), + count(DISTINCT c_uint64) FROM test GROUP BY c_group ", @@ -260,7 +260,7 @@ async fn count_distinct_integers_aggregated_single_partition() -> Result<()> { let results = run_count_distinct_integers_aggregated_scenario(partitions).await?; let expected = ["+---------+----------------------+-----------------------------+------------------------------+------------------------------+------------------------------+------------------------------+-------------------------------+-------------------------------+-------------------------------+", - "| c_group | COUNT(test.c_uint64) | COUNT(DISTINCT test.c_int8) | COUNT(DISTINCT test.c_int16) | COUNT(DISTINCT test.c_int32) | COUNT(DISTINCT test.c_int64) | COUNT(DISTINCT test.c_uint8) | COUNT(DISTINCT test.c_uint16) | COUNT(DISTINCT test.c_uint32) | COUNT(DISTINCT test.c_uint64) |", + "| c_group | count(test.c_uint64) | count(DISTINCT test.c_int8) | count(DISTINCT test.c_int16) | count(DISTINCT test.c_int32) | count(DISTINCT test.c_int64) | count(DISTINCT test.c_uint8) | count(DISTINCT test.c_uint16) | count(DISTINCT test.c_uint32) | count(DISTINCT test.c_uint64) |", "+---------+----------------------+-----------------------------+------------------------------+------------------------------+------------------------------+------------------------------+-------------------------------+-------------------------------+-------------------------------+", "| a | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |", "| b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |", @@ -284,7 +284,7 @@ async fn count_distinct_integers_aggregated_multiple_partitions() -> Result<()> let results = run_count_distinct_integers_aggregated_scenario(partitions).await?; let expected = ["+---------+----------------------+-----------------------------+------------------------------+------------------------------+------------------------------+------------------------------+-------------------------------+-------------------------------+-------------------------------+", - "| c_group | COUNT(test.c_uint64) | COUNT(DISTINCT test.c_int8) | COUNT(DISTINCT test.c_int16) | COUNT(DISTINCT test.c_int32) | COUNT(DISTINCT test.c_int64) | COUNT(DISTINCT test.c_uint8) | COUNT(DISTINCT test.c_uint16) | COUNT(DISTINCT test.c_uint32) | COUNT(DISTINCT test.c_uint64) |", + "| c_group | count(test.c_uint64) | count(DISTINCT test.c_int8) | count(DISTINCT test.c_int16) | count(DISTINCT test.c_int32) | count(DISTINCT test.c_int64) | count(DISTINCT test.c_uint8) | count(DISTINCT test.c_uint16) | count(DISTINCT test.c_uint32) | count(DISTINCT test.c_uint64) |", "+---------+----------------------+-----------------------------+------------------------------+------------------------------+------------------------------+------------------------------+-------------------------------+-------------------------------+-------------------------------+", "| a | 5 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |", "| b | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |", @@ -301,7 +301,7 @@ async fn test_accumulator_row_accumulator() -> Result<()> { let ctx = SessionContext::new_with_config(config); register_aggregate_csv(&ctx).await?; - let sql = "SELECT c1, c2, MIN(c13) as min1, MIN(c9) as min2, MAX(c13) as max1, MAX(c9) as max2, AVG(c9) as avg1, MIN(c13) as min3, COUNT(C9) as cnt1, 0.5*SUM(c9-c8) as sum1 + let sql = "SELECT c1, c2, MIN(c13) as min1, MIN(c9) as min2, MAX(c13) as max1, MAX(c9) as max2, AVG(c9) as avg1, MIN(c13) as min3, count(C9) as cnt1, 0.5*SUM(c9-c8) as sum1 FROM aggregate_test_100 GROUP BY c1, c2 ORDER BY c1, c2 diff --git a/datafusion/core/tests/sql/explain_analyze.rs b/datafusion/core/tests/sql/explain_analyze.rs index 3e5a0681589c..502590f9e2e2 100644 --- a/datafusion/core/tests/sql/explain_analyze.rs +++ b/datafusion/core/tests/sql/explain_analyze.rs @@ -81,7 +81,7 @@ async fn explain_analyze_baseline_metrics() { ); assert_metrics!( &formatted, - "ProjectionExec: expr=[COUNT(*)", + "ProjectionExec: expr=[count(*)", "metrics=[output_rows=1, elapsed_compute=" ); assert_metrics!( @@ -700,7 +700,7 @@ async fn csv_explain_analyze() { // Only test basic plumbing and try to avoid having to change too // many things. explain_analyze_baseline_metrics covers the values // in greater depth - let needle = "AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[COUNT(*)], metrics=[output_rows=5"; + let needle = "AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[count(*)], metrics=[output_rows=5"; assert_contains!(&formatted, needle); let verbose_needle = "Output Rows"; @@ -793,7 +793,7 @@ async fn explain_logical_plan_only() { let expected = vec![ vec![ "logical_plan", - "Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]]\ + "Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]]\ \n SubqueryAlias: t\ \n Projection: \ \n Values: (Utf8(\"a\"), Int64(1), Int64(100)), (Utf8(\"a\"), Int64(2), Int64(150))" @@ -812,7 +812,7 @@ async fn explain_physical_plan_only() { let expected = vec![vec![ "physical_plan", - "ProjectionExec: expr=[2 as COUNT(*)]\ + "ProjectionExec: expr=[2 as count(*)]\ \n PlaceholderRowExec\ \n", ]]; diff --git a/datafusion/core/tests/user_defined/user_defined_plan.rs b/datafusion/core/tests/user_defined/user_defined_plan.rs index 07622e48afaf..13e67de3dfef 100644 --- a/datafusion/core/tests/user_defined/user_defined_plan.rs +++ b/datafusion/core/tests/user_defined/user_defined_plan.rs @@ -80,7 +80,7 @@ use datafusion::{ Expr, Extension, Limit, LogicalPlan, Sort, UserDefinedLogicalNode, UserDefinedLogicalNodeCore, }, - optimizer::{optimize_children, OptimizerConfig, OptimizerRule}, + optimizer::{OptimizerConfig, OptimizerRule}, physical_expr::EquivalenceProperties, physical_plan::{ DisplayAs, DisplayFormatType, Distribution, ExecutionMode, ExecutionPlan, @@ -92,6 +92,12 @@ use datafusion::{ }; use async_trait::async_trait; +use datafusion_common::config::ConfigOptions; +use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode}; +use datafusion_common::ScalarValue; +use datafusion_expr::Projection; +use datafusion_optimizer::optimizer::ApplyOrder; +use datafusion_optimizer::AnalyzerRule; use futures::{Stream, StreamExt}; /// Execute the specified sql and return the resulting record batches @@ -130,11 +136,13 @@ async fn setup_table_without_schemas(mut ctx: SessionContext) -> Result Result<()> { @@ -162,6 +170,34 @@ async fn run_and_compare_query(mut ctx: SessionContext, description: &str) -> Re Ok(()) } +// Run the query using the specified execution context and compare it +// to the known result +async fn run_and_compare_query_with_analyzer_rule( + mut ctx: SessionContext, + description: &str, +) -> Result<()> { + let expected = vec![ + "+------------+--------------------------+", + "| UInt64(42) | arrow_typeof(UInt64(42)) |", + "+------------+--------------------------+", + "| 42 | UInt64 |", + "+------------+--------------------------+", + ]; + + let s = exec_sql(&mut ctx, QUERY2).await?; + let actual = s.lines().collect::>(); + + assert_eq!( + expected, + actual, + "output mismatch for {}. Expectedn\n{}Actual:\n{}", + description, + expected.join("\n"), + s + ); + Ok(()) +} + // Run the query using the specified execution context and compare it // to the known result async fn run_and_compare_query_with_auto_schemas( @@ -206,6 +242,13 @@ async fn normal_query() -> Result<()> { run_and_compare_query(ctx, "Default context").await } +#[tokio::test] +// Run the query using default planners, optimizer and custom analyzer rule +async fn normal_query_with_analyzer() -> Result<()> { + let ctx = SessionContext::new().add_analyzer_rule(Arc::new(MyAnalyzerRule {})); + run_and_compare_query_with_analyzer_rule(ctx, "MyAnalyzerRule").await +} + #[tokio::test] // Run the query using topk optimization async fn topk_query() -> Result<()> { @@ -246,9 +289,10 @@ async fn topk_plan() -> Result<()> { fn make_topk_context() -> SessionContext { let config = SessionConfig::new().with_target_partitions(48); let runtime = Arc::new(RuntimeEnv::default()); - let state = SessionState::new_with_config_rt(config, runtime) + let mut state = SessionState::new_with_config_rt(config, runtime) .with_query_planner(Arc::new(TopKQueryPlanner {})) .add_optimizer_rule(Arc::new(TopKOptimizerRule {})); + state.add_analyzer_rule(Arc::new(MyAnalyzerRule {})); SessionContext::new_with_state(state) } @@ -279,12 +323,24 @@ impl QueryPlanner for TopKQueryPlanner { struct TopKOptimizerRule {} impl OptimizerRule for TopKOptimizerRule { + fn name(&self) -> &str { + "topk" + } + + fn apply_order(&self) -> Option { + Some(ApplyOrder::TopDown) + } + + fn supports_rewrite(&self) -> bool { + true + } + // Example rewrite pass to insert a user defined LogicalPlanNode - fn try_optimize( + fn rewrite( &self, - plan: &LogicalPlan, - config: &dyn OptimizerConfig, - ) -> Result> { + plan: LogicalPlan, + _config: &dyn OptimizerConfig, + ) -> Result, DataFusionError> { // Note: this code simply looks for the pattern of a Limit followed by a // Sort and replaces it by a TopK node. It does not handle many // edge cases (e.g multiple sort columns, sort ASC / DESC), etc. @@ -292,7 +348,7 @@ impl OptimizerRule for TopKOptimizerRule { fetch: Some(fetch), input, .. - }) = plan + }) = &plan { if let LogicalPlan::Sort(Sort { ref expr, @@ -302,12 +358,10 @@ impl OptimizerRule for TopKOptimizerRule { { if expr.len() == 1 { // we found a sort with a single sort expr, replace with a a TopK - return Ok(Some(LogicalPlan::Extension(Extension { + return Ok(Transformed::yes(LogicalPlan::Extension(Extension { node: Arc::new(TopKPlanNode { k: *fetch, - input: self - .try_optimize(input.as_ref(), config)? - .unwrap_or_else(|| input.as_ref().clone()), + input: input.as_ref().clone(), expr: expr[0].clone(), }), }))); @@ -315,13 +369,7 @@ impl OptimizerRule for TopKOptimizerRule { } } - // If we didn't find the Limit/Sort combination, recurse as - // normal and build the result. - optimize_children(self, plan, config) - } - - fn name(&self) -> &str { - "topk" + Ok(Transformed::no(plan)) } } @@ -619,3 +667,52 @@ impl RecordBatchStream for TopKReader { self.input.schema() } } + +struct MyAnalyzerRule {} + +impl AnalyzerRule for MyAnalyzerRule { + fn analyze(&self, plan: LogicalPlan, _config: &ConfigOptions) -> Result { + Self::analyze_plan(plan) + } + + fn name(&self) -> &str { + "my_analyzer_rule" + } +} + +impl MyAnalyzerRule { + fn analyze_plan(plan: LogicalPlan) -> Result { + plan.transform(|plan| { + Ok(match plan { + LogicalPlan::Projection(projection) => { + let expr = Self::analyze_expr(projection.expr.clone())?; + Transformed::yes(LogicalPlan::Projection(Projection::try_new( + expr, + projection.input, + )?)) + } + _ => Transformed::no(plan), + }) + }) + .data() + } + + fn analyze_expr(expr: Vec) -> Result> { + expr.into_iter() + .map(|e| { + e.transform(|e| { + Ok(match e { + Expr::Literal(ScalarValue::Int64(i)) => { + // transform to UInt64 + Transformed::yes(Expr::Literal(ScalarValue::UInt64( + i.map(|i| i as u64), + ))) + } + _ => Transformed::no(e), + }) + }) + .data() + }) + .collect() + } +} diff --git a/datafusion/expr/src/expr.rs b/datafusion/expr/src/expr.rs index 4177693f0fa1..dc633ff263fd 100644 --- a/datafusion/expr/src/expr.rs +++ b/datafusion/expr/src/expr.rs @@ -34,7 +34,9 @@ use crate::{ use crate::{window_frame, Volatility}; use arrow::datatypes::{DataType, FieldRef}; -use datafusion_common::tree_node::{Transformed, TransformedResult, TreeNode}; +use datafusion_common::tree_node::{ + Transformed, TransformedResult, TreeNode, TreeNodeRecursion, +}; use datafusion_common::{ internal_err, plan_err, Column, DFSchema, Result, ScalarValue, TableReference, }; @@ -1334,6 +1336,46 @@ impl Expr { Ok(using_columns) } + /// Return all references to columns in this expression. + /// + /// # Example + /// ``` + /// # use std::collections::HashSet; + /// # use datafusion_common::Column; + /// # use datafusion_expr::col; + /// // For an expression `a + (b * a)` + /// let expr = col("a") + (col("b") * col("a")); + /// let refs = expr.column_refs(); + /// // refs contains "a" and "b" + /// assert_eq!(refs.len(), 2); + /// assert!(refs.contains(&Column::new_unqualified("a"))); + /// assert!(refs.contains(&Column::new_unqualified("b"))); + /// ``` + pub fn column_refs(&self) -> HashSet<&Column> { + let mut using_columns = HashSet::new(); + self.add_column_refs(&mut using_columns); + using_columns + } + + /// Adds references to all columns in this expression to the set + /// + /// See [`Self::column_refs`] for details + pub fn add_column_refs<'a>(&'a self, set: &mut HashSet<&'a Column>) { + self.apply(|expr| { + if let Expr::Column(col) = expr { + set.insert(col); + } + Ok(TreeNodeRecursion::Continue) + }) + .expect("traversal is infallable"); + } + + /// Returns true if there are any column references in this Expr + pub fn any_column_refs(&self) -> bool { + self.exists(|expr| Ok(matches!(expr, Expr::Column(_)))) + .unwrap() + } + /// Return true when the expression contains out reference(correlated) expressions. pub fn contains_outer(&self) -> bool { self.exists(|expr| Ok(matches!(expr, Expr::OuterReferenceColumn { .. }))) @@ -2209,7 +2251,7 @@ mod test { // single column { let expr = &Expr::Cast(Cast::new(Box::new(col("a")), DataType::Float64)); - let columns = expr.to_columns()?; + let columns = expr.column_refs(); assert_eq!(1, columns.len()); assert!(columns.contains(&Column::from_name("a"))); } @@ -2217,7 +2259,7 @@ mod test { // multiple columns { let expr = col("a") + col("b") + lit(1); - let columns = expr.to_columns()?; + let columns = expr.column_refs(); assert_eq!(2, columns.len()); assert!(columns.contains(&Column::from_name("a"))); assert!(columns.contains(&Column::from_name("b"))); diff --git a/datafusion/expr/src/expr_fn.rs b/datafusion/expr/src/expr_fn.rs index a87412ee6356..deac20555771 100644 --- a/datafusion/expr/src/expr_fn.rs +++ b/datafusion/expr/src/expr_fn.rs @@ -31,7 +31,9 @@ use crate::{ Signature, Volatility, }; use crate::{AggregateUDFImpl, ColumnarValue, ScalarUDFImpl, WindowUDF, WindowUDFImpl}; -use arrow::compute::kernels::cast_utils::parse_interval_month_day_nano; +use arrow::compute::kernels::cast_utils::{ + parse_interval_day_time, parse_interval_month_day_nano, parse_interval_year_month, +}; use arrow::datatypes::{DataType, Field}; use datafusion_common::{Column, Result, ScalarValue}; use std::any::Any; @@ -671,6 +673,16 @@ impl WindowUDFImpl for SimpleWindowUDF { } } +pub fn interval_year_month_lit(value: &str) -> Expr { + let interval = parse_interval_year_month(value).ok(); + Expr::Literal(ScalarValue::IntervalYearMonth(interval)) +} + +pub fn interval_datetime_lit(value: &str) -> Expr { + let interval = parse_interval_day_time(value).ok(); + Expr::Literal(ScalarValue::IntervalDayTime(interval)) +} + pub fn interval_month_day_nano_lit(value: &str) -> Expr { let interval = parse_interval_month_day_nano(value).ok(); Expr::Literal(ScalarValue::IntervalMonthDayNano(interval)) diff --git a/datafusion/expr/src/function.rs b/datafusion/expr/src/function.rs index 169436145aae..73ab51494de6 100644 --- a/datafusion/expr/src/function.rs +++ b/datafusion/expr/src/function.rs @@ -23,6 +23,14 @@ use arrow::datatypes::{DataType, Field, Schema}; use datafusion_common::Result; use std::sync::Arc; +#[derive(Debug, Clone, Copy)] +pub enum Hint { + /// Indicates the argument needs to be padded if it is scalar + Pad, + /// Indicates the argument can be converted to an array of length 1 + AcceptsSingular, +} + /// Scalar function /// /// The Fn param is the wrapped function but be aware that the function will diff --git a/datafusion/expr/src/logical_plan/plan.rs b/datafusion/expr/src/logical_plan/plan.rs index 85958223ac97..6e7efaf39e3e 100644 --- a/datafusion/expr/src/logical_plan/plan.rs +++ b/datafusion/expr/src/logical_plan/plan.rs @@ -281,6 +281,15 @@ pub enum LogicalPlan { RecursiveQuery(RecursiveQuery), } +impl Default for LogicalPlan { + fn default() -> Self { + LogicalPlan::EmptyRelation(EmptyRelation { + produce_one_row: false, + schema: Arc::new(DFSchema::empty()), + }) + } +} + impl LogicalPlan { /// Get a reference to the logical plan's schema pub fn schema(&self) -> &DFSchemaRef { diff --git a/datafusion/expr/src/type_coercion/binary.rs b/datafusion/expr/src/type_coercion/binary.rs index 615bb3ac568c..ea9d0c2fe72e 100644 --- a/datafusion/expr/src/type_coercion/binary.rs +++ b/datafusion/expr/src/type_coercion/binary.rs @@ -1050,12 +1050,16 @@ fn temporal_coercion(lhs_type: &DataType, rhs_type: &DataType) -> Option { let tz = match (lhs_tz, rhs_tz) { - // can't cast across timezones (Some(lhs_tz), Some(rhs_tz)) => { - if lhs_tz != rhs_tz { - return None; - } else { - Some(lhs_tz.clone()) + match (lhs_tz.as_ref(), rhs_tz.as_ref()) { + // UTC and "+00:00" are the same by definition. Most other timezones + // do not have a 1-1 mapping between timezone and an offset from UTC + ("UTC", "+00:00") | ("+00:00", "UTC") => Some(lhs_tz.clone()), + (lhs, rhs) if lhs == rhs => Some(lhs_tz.clone()), + // can't cast across timezones + _ => { + return None; + } } } (Some(lhs_tz), None) => Some(lhs_tz.clone()), diff --git a/datafusion/expr/src/utils.rs b/datafusion/expr/src/utils.rs index 3ab0c180dcba..6baabfcc7130 100644 --- a/datafusion/expr/src/utils.rs +++ b/datafusion/expr/src/utils.rs @@ -46,6 +46,7 @@ pub const COUNT_STAR_EXPANSION: ScalarValue = ScalarValue::Int64(Some(1)); /// Recursively walk a list of expression trees, collecting the unique set of columns /// referenced in the expression +#[deprecated(since = "40.0.0", note = "Expr::add_column_refs instead")] pub fn exprlist_to_columns(expr: &[Expr], accum: &mut HashSet) -> Result<()> { for e in expr { expr_to_columns(e, accum)?; diff --git a/datafusion/functions-aggregate/src/count.rs b/datafusion/functions-aggregate/src/count.rs index 062e148975bf..84abc0d73098 100644 --- a/datafusion/functions-aggregate/src/count.rs +++ b/datafusion/functions-aggregate/src/count.rs @@ -77,7 +77,6 @@ pub fn count_distinct(expr: Expr) -> datafusion_expr::Expr { pub struct Count { signature: Signature, - aliases: Vec, } impl Debug for Count { @@ -98,7 +97,6 @@ impl Default for Count { impl Count { pub fn new() -> Self { Self { - aliases: vec!["count".to_string()], signature: Signature::variadic_any(Volatility::Immutable), } } @@ -110,7 +108,7 @@ impl AggregateUDFImpl for Count { } fn name(&self) -> &str { - "COUNT" + "count" } fn signature(&self) -> &Signature { @@ -249,7 +247,7 @@ impl AggregateUDFImpl for Count { } fn aliases(&self) -> &[String] { - &self.aliases + &[] } fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool { diff --git a/datafusion/functions/Cargo.toml b/datafusion/functions/Cargo.toml index 20d6cbc37459..884a66724c91 100644 --- a/datafusion/functions/Cargo.toml +++ b/datafusion/functions/Cargo.toml @@ -73,7 +73,6 @@ chrono = { workspace = true } datafusion-common = { workspace = true } datafusion-execution = { workspace = true } datafusion-expr = { workspace = true } -datafusion-physical-expr = { workspace = true, default-features = true } hashbrown = { workspace = true, optional = true } hex = { version = "0.4", optional = true } itertools = { workspace = true } diff --git a/datafusion/functions/src/math/gcd.rs b/datafusion/functions/src/math/gcd.rs index 41c9e4e23314..d0199f7a22c4 100644 --- a/datafusion/functions/src/math/gcd.rs +++ b/datafusion/functions/src/math/gcd.rs @@ -88,16 +88,16 @@ fn gcd(args: &[ArrayRef]) -> Result { /// Computes greatest common divisor using Binary GCD algorithm. pub fn compute_gcd(x: i64, y: i64) -> i64 { - let mut a = x.wrapping_abs(); - let mut b = y.wrapping_abs(); - - if a == 0 { - return b; + if x == 0 { + return y; } - if b == 0 { - return a; + if y == 0 { + return x; } + let mut a = x.unsigned_abs(); + let mut b = y.unsigned_abs(); + let shift = (a | b).trailing_zeros(); a >>= shift; b >>= shift; @@ -112,7 +112,8 @@ pub fn compute_gcd(x: i64, y: i64) -> i64 { b -= a; if b == 0 { - return a << shift; + // because the input values are i64, casting this back to i64 is safe + return (a << shift) as i64; } } } diff --git a/datafusion/functions/src/regex/regexpreplace.rs b/datafusion/functions/src/regex/regexpreplace.rs index 4e21883c9752..201eebde22bb 100644 --- a/datafusion/functions/src/regex/regexpreplace.rs +++ b/datafusion/functions/src/regex/regexpreplace.rs @@ -28,10 +28,10 @@ use datafusion_common::ScalarValue; use datafusion_common::{ cast::as_generic_string_array, internal_err, DataFusionError, Result, }; +use datafusion_expr::function::Hint; use datafusion_expr::ColumnarValue; use datafusion_expr::TypeSignature::*; use datafusion_expr::{ScalarUDFImpl, Signature, Volatility}; -use datafusion_physical_expr::functions::Hint; use regex::Regex; use std::any::Any; use std::collections::HashMap; diff --git a/datafusion/functions/src/string/btrim.rs b/datafusion/functions/src/string/btrim.rs index 97b54a194a27..349928d09664 100644 --- a/datafusion/functions/src/string/btrim.rs +++ b/datafusion/functions/src/string/btrim.rs @@ -21,10 +21,10 @@ use std::any::Any; use arrow::datatypes::DataType; use datafusion_common::{exec_err, Result}; +use datafusion_expr::function::Hint; use datafusion_expr::TypeSignature::*; use datafusion_expr::{ColumnarValue, Volatility}; use datafusion_expr::{ScalarUDFImpl, Signature}; -use datafusion_physical_expr::functions::Hint; use crate::string::common::*; use crate::utils::{make_scalar_function, utf8_to_str_type}; diff --git a/datafusion/functions/src/string/ltrim.rs b/datafusion/functions/src/string/ltrim.rs index ef05a2cb2a13..de14bbaa2bcf 100644 --- a/datafusion/functions/src/string/ltrim.rs +++ b/datafusion/functions/src/string/ltrim.rs @@ -21,10 +21,10 @@ use arrow::array::{ArrayRef, OffsetSizeTrait}; use arrow::datatypes::DataType; use datafusion_common::{exec_err, Result}; +use datafusion_expr::function::Hint; use datafusion_expr::TypeSignature::*; use datafusion_expr::{ColumnarValue, Volatility}; use datafusion_expr::{ScalarUDFImpl, Signature}; -use datafusion_physical_expr::functions::Hint; use crate::string::common::*; use crate::utils::{make_scalar_function, utf8_to_str_type}; diff --git a/datafusion/functions/src/string/rtrim.rs b/datafusion/functions/src/string/rtrim.rs index 2e39080e226b..2d29b50cb173 100644 --- a/datafusion/functions/src/string/rtrim.rs +++ b/datafusion/functions/src/string/rtrim.rs @@ -21,10 +21,10 @@ use std::any::Any; use arrow::datatypes::DataType; use datafusion_common::{exec_err, Result}; +use datafusion_expr::function::Hint; use datafusion_expr::TypeSignature::*; use datafusion_expr::{ColumnarValue, Volatility}; use datafusion_expr::{ScalarUDFImpl, Signature}; -use datafusion_physical_expr::functions::Hint; use crate::string::common::*; use crate::utils::{make_scalar_function, utf8_to_str_type}; diff --git a/datafusion/functions/src/utils.rs b/datafusion/functions/src/utils.rs index d14844c4a445..393dcc456a88 100644 --- a/datafusion/functions/src/utils.rs +++ b/datafusion/functions/src/utils.rs @@ -18,8 +18,8 @@ use arrow::array::ArrayRef; use arrow::datatypes::DataType; use datafusion_common::{Result, ScalarValue}; +use datafusion_expr::function::Hint; use datafusion_expr::{ColumnarValue, ScalarFunctionImplementation}; -use datafusion_physical_expr::functions::Hint; use std::sync::Arc; /// Creates a function to identify the optimal return type of a string function given diff --git a/datafusion/optimizer/src/analyzer/count_wildcard_rule.rs b/datafusion/optimizer/src/analyzer/count_wildcard_rule.rs index de2af520053a..34f9802b1fd9 100644 --- a/datafusion/optimizer/src/analyzer/count_wildcard_rule.rs +++ b/datafusion/optimizer/src/analyzer/count_wildcard_rule.rs @@ -59,14 +59,14 @@ fn is_count_star_aggregate(aggregate_function: &AggregateFunction) -> bool { func_def: AggregateFunctionDefinition::UDF(udf), args, .. - } if udf.name() == "COUNT" && args.len() == 1 && is_wildcard(&args[0])) + } if udf.name() == "count" && args.len() == 1 && is_wildcard(&args[0])) } fn is_count_star_window_aggregate(window_function: &WindowFunction) -> bool { let args = &window_function.args; matches!(window_function.fun, WindowFunctionDefinition::AggregateUDF(ref udaf) - if udaf.name() == "COUNT" && args.len() == 1 && is_wildcard(&args[0])) + if udaf.name() == "count" && args.len() == 1 && is_wildcard(&args[0])) } fn analyze_internal(plan: LogicalPlan) -> Result> { @@ -127,9 +127,9 @@ mod tests { .project(vec![count(wildcard())])? .sort(vec![count(wildcard()).sort(true, false)])? .build()?; - let expected = "Sort: COUNT(*) ASC NULLS LAST [COUNT(*):Int64;N]\ - \n Projection: COUNT(*) [COUNT(*):Int64;N]\ - \n Aggregate: groupBy=[[test.b]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] [b:UInt32, COUNT(*):Int64;N]\ + let expected = "Sort: count(*) ASC NULLS LAST [count(*):Int64;N]\ + \n Projection: count(*) [count(*):Int64;N]\ + \n Aggregate: groupBy=[[test.b]], aggr=[[count(Int64(1)) AS count(*)]] [b:UInt32, count(*):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) } @@ -152,9 +152,9 @@ mod tests { .build()?; let expected = "Filter: t1.a IN () [a:UInt32, b:UInt32, c:UInt32]\ - \n Subquery: [COUNT(*):Int64;N]\ - \n Projection: COUNT(*) [COUNT(*):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] [COUNT(*):Int64;N]\ + \n Subquery: [count(*):Int64;N]\ + \n Projection: count(*) [count(*):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] [count(*):Int64;N]\ \n TableScan: t2 [a:UInt32, b:UInt32, c:UInt32]\ \n TableScan: t1 [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) @@ -175,9 +175,9 @@ mod tests { .build()?; let expected = "Filter: EXISTS () [a:UInt32, b:UInt32, c:UInt32]\ - \n Subquery: [COUNT(*):Int64;N]\ - \n Projection: COUNT(*) [COUNT(*):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] [COUNT(*):Int64;N]\ + \n Subquery: [count(*):Int64;N]\ + \n Projection: count(*) [count(*):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] [count(*):Int64;N]\ \n TableScan: t2 [a:UInt32, b:UInt32, c:UInt32]\ \n TableScan: t1 [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) @@ -207,9 +207,9 @@ mod tests { let expected = "Projection: t1.a, t1.b [a:UInt32, b:UInt32]\ \n Filter: () > UInt8(0) [a:UInt32, b:UInt32, c:UInt32]\ - \n Subquery: [COUNT(Int64(1)):Int64;N]\ - \n Projection: COUNT(Int64(1)) [COUNT(Int64(1)):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]] [COUNT(Int64(1)):Int64;N]\ + \n Subquery: [count(Int64(1)):Int64;N]\ + \n Projection: count(Int64(1)) [count(Int64(1)):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]] [count(Int64(1)):Int64;N]\ \n Filter: outer_ref(t1.a) = t2.a [a:UInt32, b:UInt32, c:UInt32]\ \n TableScan: t2 [a:UInt32, b:UInt32, c:UInt32]\ \n TableScan: t1 [a:UInt32, b:UInt32, c:UInt32]"; @@ -235,8 +235,8 @@ mod tests { .project(vec![count(wildcard())])? .build()?; - let expected = "Projection: COUNT(Int64(1)) AS COUNT(*) [COUNT(*):Int64;N]\ - \n WindowAggr: windowExpr=[[COUNT(Int64(1)) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS COUNT(*) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING]] [a:UInt32, b:UInt32, c:UInt32, COUNT(*) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING:Int64;N]\ + let expected = "Projection: count(Int64(1)) AS count(*) [count(*):Int64;N]\ + \n WindowAggr: windowExpr=[[count(Int64(1)) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS count(*) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING]] [a:UInt32, b:UInt32, c:UInt32, count(*) ORDER BY [test.a DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING:Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) } @@ -249,8 +249,8 @@ mod tests { .project(vec![count(wildcard())])? .build()?; - let expected = "Projection: COUNT(*) [COUNT(*):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] [COUNT(*):Int64;N]\ + let expected = "Projection: count(*) [count(*):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] [count(*):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) } @@ -272,8 +272,8 @@ mod tests { .project(vec![count(wildcard())])? .build()?; - let expected = "Projection: COUNT(Int64(1)) AS COUNT(*) [COUNT(*):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[MAX(COUNT(Int64(1))) AS MAX(COUNT(*))]] [MAX(COUNT(*)):Int64;N]\ + let expected = "Projection: count(Int64(1)) AS count(*) [count(*):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[MAX(count(Int64(1))) AS MAX(count(*))]] [MAX(count(*)):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_plan_eq(plan, expected) } diff --git a/datafusion/optimizer/src/analyzer/mod.rs b/datafusion/optimizer/src/analyzer/mod.rs index 121e46cc950f..32bb2bc70452 100644 --- a/datafusion/optimizer/src/analyzer/mod.rs +++ b/datafusion/optimizer/src/analyzer/mod.rs @@ -57,7 +57,7 @@ pub mod type_coercion; /// Use [`SessionState::add_analyzer_rule`] to register additional /// `AnalyzerRule`s. /// -/// [`SessionState::add_analyzer_rule`]: https://docs.rs/datafusion/latest/datafusion/execution/context/struct.SessionState.html#method.add_analyzer_rule +/// [`SessionState::add_analyzer_rule`]: https://docs.rs/datafusion/latest/datafusion/execution/session_state/struct.SessionState.html#method.add_analyzer_rule pub trait AnalyzerRule { /// Rewrite `plan` fn analyze(&self, plan: LogicalPlan, config: &ConfigOptions) -> Result; diff --git a/datafusion/optimizer/src/analyzer/subquery.rs b/datafusion/optimizer/src/analyzer/subquery.rs index 444ee94c4292..7d1290204eb7 100644 --- a/datafusion/optimizer/src/analyzer/subquery.rs +++ b/datafusion/optimizer/src/analyzer/subquery.rs @@ -300,19 +300,17 @@ fn can_pullup_over_aggregation(expr: &Expr) -> bool { }) = expr { match (left.deref(), right.deref()) { - (Expr::Column(_), right) if right.to_columns().unwrap().is_empty() => true, - (left, Expr::Column(_)) if left.to_columns().unwrap().is_empty() => true, + (Expr::Column(_), right) => !right.any_column_refs(), + (left, Expr::Column(_)) => !left.any_column_refs(), (Expr::Cast(Cast { expr, .. }), right) - if matches!(expr.deref(), Expr::Column(_)) - && right.to_columns().unwrap().is_empty() => + if matches!(expr.deref(), Expr::Column(_)) => { - true + !right.any_column_refs() } (left, Expr::Cast(Cast { expr, .. })) - if matches!(expr.deref(), Expr::Column(_)) - && left.to_columns().unwrap().is_empty() => + if matches!(expr.deref(), Expr::Column(_)) => { - true + !left.any_column_refs() } (_, _) => false, } @@ -323,9 +321,10 @@ fn can_pullup_over_aggregation(expr: &Expr) -> bool { /// Check whether the window expressions contain a mixture of out reference columns and inner columns fn check_mixed_out_refer_in_window(window: &Window) -> Result<()> { - let mixed = window.window_expr.iter().any(|win_expr| { - win_expr.contains_outer() && !win_expr.to_columns().unwrap().is_empty() - }); + let mixed = window + .window_expr + .iter() + .any(|win_expr| win_expr.contains_outer() && win_expr.any_column_refs()); if mixed { plan_err!( "Window expressions should not contain a mixed of outer references and inner columns" diff --git a/datafusion/optimizer/src/common_subexpr_eliminate.rs b/datafusion/optimizer/src/common_subexpr_eliminate.rs index 5693d0090677..ee648292e75e 100644 --- a/datafusion/optimizer/src/common_subexpr_eliminate.rs +++ b/datafusion/optimizer/src/common_subexpr_eliminate.rs @@ -31,8 +31,7 @@ use datafusion_common::tree_node::{ Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter, TreeNodeVisitor, }; use datafusion_common::{ - internal_datafusion_err, internal_err, qualified_name, Column, DFSchema, DFSchemaRef, - Result, + internal_datafusion_err, qualified_name, Column, DFSchema, DFSchemaRef, Result, }; use datafusion_expr::expr::Alias; use datafusion_expr::logical_plan::tree_node::unwrap_arc; @@ -681,14 +680,6 @@ fn get_consecutive_window_exprs( } impl OptimizerRule for CommonSubexprEliminate { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called CommonSubexprEliminate::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/decorrelate.rs b/datafusion/optimizer/src/decorrelate.rs index e949e1921b97..5f8e0a85215a 100644 --- a/datafusion/optimizer/src/decorrelate.rs +++ b/datafusion/optimizer/src/decorrelate.rs @@ -370,11 +370,14 @@ impl PullUpCorrelatedExpr { } } if let Some(pull_up_having) = &self.pull_up_having_expr { - let filter_apply_columns = pull_up_having.to_columns()?; + let filter_apply_columns = pull_up_having.column_refs(); for col in filter_apply_columns { - let col_expr = Expr::Column(col); - if !missing_exprs.contains(&col_expr) { - missing_exprs.push(col_expr) + // add to missing_exprs if not already there + let contains = missing_exprs + .iter() + .any(|expr| matches!(expr, Expr::Column(c) if c == col)); + if !contains { + missing_exprs.push(Expr::Column(col.clone())) } } } @@ -436,7 +439,7 @@ fn agg_exprs_evaluation_result_on_empty_batch( Transformed::yes(Expr::Literal(ScalarValue::Null)) } AggregateFunctionDefinition::UDF(fun) => { - if fun.name() == "COUNT" { + if fun.name() == "count" { Transformed::yes(Expr::Literal(ScalarValue::Int64(Some( 0, )))) diff --git a/datafusion/optimizer/src/decorrelate_predicate_subquery.rs b/datafusion/optimizer/src/decorrelate_predicate_subquery.rs index e5e97b693c6a..81d6dc863af6 100644 --- a/datafusion/optimizer/src/decorrelate_predicate_subquery.rs +++ b/datafusion/optimizer/src/decorrelate_predicate_subquery.rs @@ -123,14 +123,6 @@ impl DecorrelatePredicateSubquery { } impl OptimizerRule for DecorrelatePredicateSubquery { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called DecorrelatePredicateSubquery::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/eliminate_cross_join.rs b/datafusion/optimizer/src/eliminate_cross_join.rs index 9d871c50ad99..6d6f84373a36 100644 --- a/datafusion/optimizer/src/eliminate_cross_join.rs +++ b/datafusion/optimizer/src/eliminate_cross_join.rs @@ -77,14 +77,6 @@ impl EliminateCrossJoin { /// /// This fix helps to improve the performance of TPCH Q19. issue#78 impl OptimizerRule for EliminateCrossJoin { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateCrossJoin::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/eliminate_duplicated_expr.rs b/datafusion/optimizer/src/eliminate_duplicated_expr.rs index 3dbfc750e899..e9d091d52b00 100644 --- a/datafusion/optimizer/src/eliminate_duplicated_expr.rs +++ b/datafusion/optimizer/src/eliminate_duplicated_expr.rs @@ -20,7 +20,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::logical_plan::LogicalPlan; use datafusion_expr::{Aggregate, Expr, Sort}; use indexmap::IndexSet; @@ -63,14 +63,6 @@ impl Hash for SortExprWrapper { } } impl OptimizerRule for EliminateDuplicatedExpr { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateDuplicatedExpr::rewrite") - } - fn apply_order(&self) -> Option { Some(ApplyOrder::TopDown) } diff --git a/datafusion/optimizer/src/eliminate_filter.rs b/datafusion/optimizer/src/eliminate_filter.rs index 97f234942182..7c873b411d59 100644 --- a/datafusion/optimizer/src/eliminate_filter.rs +++ b/datafusion/optimizer/src/eliminate_filter.rs @@ -18,7 +18,7 @@ //! [`EliminateFilter`] replaces `where false` or `where null` with an empty relation. use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result, ScalarValue}; +use datafusion_common::{Result, ScalarValue}; use datafusion_expr::logical_plan::tree_node::unwrap_arc; use datafusion_expr::{EmptyRelation, Expr, Filter, LogicalPlan}; @@ -41,14 +41,6 @@ impl EliminateFilter { } impl OptimizerRule for EliminateFilter { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateFilter::rewrite") - } - fn name(&self) -> &str { "eliminate_filter" } diff --git a/datafusion/optimizer/src/eliminate_group_by_constant.rs b/datafusion/optimizer/src/eliminate_group_by_constant.rs index 7a8dd7aac249..c7869d9e4dd7 100644 --- a/datafusion/optimizer/src/eliminate_group_by_constant.rs +++ b/datafusion/optimizer/src/eliminate_group_by_constant.rs @@ -20,7 +20,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::{Aggregate, Expr, LogicalPlan, LogicalPlanBuilder, Volatility}; /// Optimizer rule that removes constant expressions from `GROUP BY` clause @@ -82,14 +82,6 @@ impl OptimizerRule for EliminateGroupByConstant { } } - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateGroupByConstant::rewrite") - } - fn name(&self) -> &str { "eliminate_group_by_constant" } @@ -176,8 +168,8 @@ mod tests { .build()?; let expected = "\ - Projection: test.a, UInt32(1), COUNT(test.c)\ - \n Aggregate: groupBy=[[test.a]], aggr=[[COUNT(test.c)]]\ + Projection: test.a, UInt32(1), count(test.c)\ + \n Aggregate: groupBy=[[test.a]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; @@ -196,8 +188,8 @@ mod tests { .build()?; let expected = "\ - Projection: Utf8(\"test\"), UInt32(123), COUNT(test.c)\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(test.c)]]\ + Projection: Utf8(\"test\"), UInt32(123), count(test.c)\ + \n Aggregate: groupBy=[[]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; @@ -216,7 +208,7 @@ mod tests { .build()?; let expected = "\ - Aggregate: groupBy=[[test.a, test.b]], aggr=[[COUNT(test.c)]]\ + Aggregate: groupBy=[[test.a, test.b]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; @@ -257,8 +249,8 @@ mod tests { .build()?; let expected = "\ - Projection: UInt32(123) AS const, test.a, COUNT(test.c)\ - \n Aggregate: groupBy=[[test.a]], aggr=[[COUNT(test.c)]]\ + Projection: UInt32(123) AS const, test.a, count(test.c)\ + \n Aggregate: groupBy=[[test.a]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; @@ -282,8 +274,8 @@ mod tests { .build()?; let expected = "\ - Projection: scalar_fn_mock(UInt32(123)), test.a, COUNT(test.c)\ - \n Aggregate: groupBy=[[test.a]], aggr=[[COUNT(test.c)]]\ + Projection: scalar_fn_mock(UInt32(123)), test.a, count(test.c)\ + \n Aggregate: groupBy=[[test.a]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; @@ -307,7 +299,7 @@ mod tests { .build()?; let expected = "\ - Aggregate: groupBy=[[scalar_fn_mock(UInt32(123)), test.a]], aggr=[[COUNT(test.c)]]\ + Aggregate: groupBy=[[scalar_fn_mock(UInt32(123)), test.a]], aggr=[[count(test.c)]]\ \n TableScan: test\ "; diff --git a/datafusion/optimizer/src/eliminate_join.rs b/datafusion/optimizer/src/eliminate_join.rs index fea87e758790..c5115c87a0ed 100644 --- a/datafusion/optimizer/src/eliminate_join.rs +++ b/datafusion/optimizer/src/eliminate_join.rs @@ -19,7 +19,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result, ScalarValue}; +use datafusion_common::{Result, ScalarValue}; use datafusion_expr::JoinType::Inner; use datafusion_expr::{ logical_plan::{EmptyRelation, LogicalPlan}, @@ -38,14 +38,6 @@ impl EliminateJoin { } impl OptimizerRule for EliminateJoin { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateJoin::rewrite") - } - fn name(&self) -> &str { "eliminate_join" } diff --git a/datafusion/optimizer/src/eliminate_limit.rs b/datafusion/optimizer/src/eliminate_limit.rs index bdb821bf3a1f..b0a75fa47c27 100644 --- a/datafusion/optimizer/src/eliminate_limit.rs +++ b/datafusion/optimizer/src/eliminate_limit.rs @@ -19,7 +19,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::logical_plan::{tree_node::unwrap_arc, EmptyRelation, LogicalPlan}; /// Optimizer rule to replace `LIMIT 0` or `LIMIT` whose ancestor LIMIT's skip is @@ -40,14 +40,6 @@ impl EliminateLimit { } impl OptimizerRule for EliminateLimit { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateLimit::rewrite") - } - fn name(&self) -> &str { "eliminate_limit" } diff --git a/datafusion/optimizer/src/eliminate_nested_union.rs b/datafusion/optimizer/src/eliminate_nested_union.rs index aa6f2b497531..09407aed53cd 100644 --- a/datafusion/optimizer/src/eliminate_nested_union.rs +++ b/datafusion/optimizer/src/eliminate_nested_union.rs @@ -19,7 +19,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::expr_rewriter::coerce_plan_expr_for_schema; use datafusion_expr::{Distinct, LogicalPlan, Union}; use std::sync::Arc; @@ -36,14 +36,6 @@ impl EliminateNestedUnion { } impl OptimizerRule for EliminateNestedUnion { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateNestedUnion::rewrite") - } - fn name(&self) -> &str { "eliminate_nested_union" } diff --git a/datafusion/optimizer/src/eliminate_one_union.rs b/datafusion/optimizer/src/eliminate_one_union.rs index 7763e7d3b796..edf6b72d7e17 100644 --- a/datafusion/optimizer/src/eliminate_one_union.rs +++ b/datafusion/optimizer/src/eliminate_one_union.rs @@ -17,7 +17,7 @@ //! [`EliminateOneUnion`] eliminates single element `Union` use crate::{OptimizerConfig, OptimizerRule}; -use datafusion_common::{internal_err, tree_node::Transformed, Result}; +use datafusion_common::{tree_node::Transformed, Result}; use datafusion_expr::logical_plan::{tree_node::unwrap_arc, LogicalPlan, Union}; use crate::optimizer::ApplyOrder; @@ -34,14 +34,6 @@ impl EliminateOneUnion { } impl OptimizerRule for EliminateOneUnion { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateOneUnion::rewrite") - } - fn name(&self) -> &str { "eliminate_one_union" } diff --git a/datafusion/optimizer/src/eliminate_outer_join.rs b/datafusion/optimizer/src/eliminate_outer_join.rs index c3c5d80922f9..ccc637a0eb01 100644 --- a/datafusion/optimizer/src/eliminate_outer_join.rs +++ b/datafusion/optimizer/src/eliminate_outer_join.rs @@ -17,7 +17,7 @@ //! [`EliminateOuterJoin`] converts `LEFT/RIGHT/FULL` joins to `INNER` joins use crate::{OptimizerConfig, OptimizerRule}; -use datafusion_common::{internal_err, Column, DFSchema, Result}; +use datafusion_common::{Column, DFSchema, Result}; use datafusion_expr::logical_plan::{Join, JoinType, LogicalPlan}; use datafusion_expr::{Expr, Filter, Operator}; @@ -60,14 +60,6 @@ impl EliminateOuterJoin { /// Attempt to eliminate outer joins. impl OptimizerRule for EliminateOuterJoin { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called EliminateOuterJoin::rewrite") - } - fn name(&self) -> &str { "eliminate_outer_join" } diff --git a/datafusion/optimizer/src/extract_equijoin_predicate.rs b/datafusion/optimizer/src/extract_equijoin_predicate.rs index 237c00352419..87d205139e8e 100644 --- a/datafusion/optimizer/src/extract_equijoin_predicate.rs +++ b/datafusion/optimizer/src/extract_equijoin_predicate.rs @@ -19,8 +19,8 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; +use datafusion_common::DFSchema; use datafusion_common::Result; -use datafusion_common::{internal_err, DFSchema}; use datafusion_expr::utils::split_conjunction_owned; use datafusion_expr::utils::{can_hash, find_valid_equijoin_key_pair}; use datafusion_expr::{BinaryExpr, Expr, ExprSchemable, Join, LogicalPlan, Operator}; @@ -49,13 +49,6 @@ impl ExtractEquijoinPredicate { } impl OptimizerRule for ExtractEquijoinPredicate { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called ExtractEquijoinPredicate::rewrite") - } fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/filter_null_join_keys.rs b/datafusion/optimizer/src/filter_null_join_keys.rs index ecd1901abe58..381713662f10 100644 --- a/datafusion/optimizer/src/filter_null_join_keys.rs +++ b/datafusion/optimizer/src/filter_null_join_keys.rs @@ -20,7 +20,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::utils::conjunction; use datafusion_expr::{ logical_plan::Filter, logical_plan::JoinType, Expr, ExprSchemable, LogicalPlan, @@ -35,14 +35,6 @@ use std::sync::Arc; pub struct FilterNullJoinKeys {} impl OptimizerRule for FilterNullJoinKeys { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called FilterNullJoinKeys::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/lib.rs b/datafusion/optimizer/src/lib.rs index c172d5979756..a6a9e5cf26ea 100644 --- a/datafusion/optimizer/src/lib.rs +++ b/datafusion/optimizer/src/lib.rs @@ -61,6 +61,7 @@ pub mod test; pub use analyzer::{Analyzer, AnalyzerRule}; pub use optimizer::{Optimizer, OptimizerConfig, OptimizerContext, OptimizerRule}; +#[allow(deprecated)] pub use utils::optimize_children; pub(crate) mod join_key_set; diff --git a/datafusion/optimizer/src/optimize_projections/mod.rs b/datafusion/optimizer/src/optimize_projections/mod.rs index 11540d3e162e..2fbf77523bd1 100644 --- a/datafusion/optimizer/src/optimize_projections/mod.rs +++ b/datafusion/optimizer/src/optimize_projections/mod.rs @@ -70,14 +70,6 @@ impl OptimizeProjections { } impl OptimizerRule for OptimizeProjections { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called OptimizeProjections::rewrite") - } - fn name(&self) -> &str { "optimize_projections" } @@ -171,7 +163,7 @@ fn optimize_projections( // still need to create a correct aggregate, which may be optimized // out later. As an example, consider the following query: // - // SELECT COUNT(*) FROM (SELECT COUNT(*) FROM [...]) + // SELECT count(*) FROM (SELECT count(*) FROM [...]) // // which always returns 1. if new_aggr_expr.is_empty() @@ -479,10 +471,10 @@ fn merge_consecutive_projections(proj: Projection) -> Result::new(); - for columns in expr.iter().flat_map(|expr| expr.to_columns()) { + let mut column_referral_map = HashMap::<&Column, usize>::new(); + for columns in expr.iter().map(|expr| expr.column_refs()) { for col in columns.into_iter() { - *column_referral_map.entry(col.clone()).or_default() += 1; + *column_referral_map.entry(col).or_default() += 1; } } @@ -493,7 +485,7 @@ fn merge_consecutive_projections(proj: Projection) -> Result 1 && !is_expr_trivial( &prev_projection.expr - [prev_projection.schema.index_of_column(&col).unwrap()], + [prev_projection.schema.index_of_column(col).unwrap()], ) }) { // no change @@ -625,12 +617,12 @@ fn rewrite_expr(expr: Expr, input: &Projection) -> Result> { /// * `expr` - The expression to analyze for outer-referenced columns. /// * `columns` - A mutable reference to a `HashSet` where detected /// columns are collected. -fn outer_columns(expr: &Expr, columns: &mut HashSet) { +fn outer_columns<'a>(expr: &'a Expr, columns: &mut HashSet<&'a Column>) { // inspect_expr_pre doesn't handle subquery references, so find them explicitly expr.apply(|expr| { match expr { Expr::OuterReferenceColumn(_, col) => { - columns.insert(col.clone()); + columns.insert(col); } Expr::ScalarSubquery(subquery) => { outer_columns_helper_multi(&subquery.outer_ref_columns, columns); @@ -660,9 +652,9 @@ fn outer_columns(expr: &Expr, columns: &mut HashSet) { /// * `exprs` - The expressions to analyze for outer-referenced columns. /// * `columns` - A mutable reference to a `HashSet` where detected /// columns are collected. -fn outer_columns_helper_multi<'a>( +fn outer_columns_helper_multi<'a, 'b>( exprs: impl IntoIterator, - columns: &mut HashSet, + columns: &'b mut HashSet<&'a Column>, ) { exprs.into_iter().for_each(|e| outer_columns(e, columns)); } @@ -1049,9 +1041,9 @@ mod tests { .build() .unwrap(); - let expected = "Aggregate: groupBy=[[]], aggr=[[COUNT(Int32(1))]]\ + let expected = "Aggregate: groupBy=[[]], aggr=[[count(Int32(1))]]\ \n Projection: \ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int32(1))]]\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int32(1))]]\ \n TableScan: ?table? projection=[]"; assert_optimized_plan_equal(plan, expected) } @@ -1901,7 +1893,7 @@ mod tests { )? .build()?; - let expected = "Aggregate: groupBy=[[test.a]], aggr=[[COUNT(test.b), COUNT(test.b) FILTER (WHERE test.c > Int32(42)) AS count2]]\ + let expected = "Aggregate: groupBy=[[test.a]], aggr=[[count(test.b), count(test.b) FILTER (WHERE test.c > Int32(42)) AS count2]]\ \n TableScan: test projection=[a, b, c]"; assert_optimized_plan_equal(plan, expected) diff --git a/datafusion/optimizer/src/optimize_projections/required_indices.rs b/datafusion/optimizer/src/optimize_projections/required_indices.rs index 113c100bbd9b..3f32a0c36a9a 100644 --- a/datafusion/optimizer/src/optimize_projections/required_indices.rs +++ b/datafusion/optimizer/src/optimize_projections/required_indices.rs @@ -113,12 +113,12 @@ impl RequiredIndicies { /// * `expr`: An expression for which we want to find necessary field indices. fn add_expr(&mut self, input_schema: &DFSchemaRef, expr: &Expr) -> Result<()> { // TODO could remove these clones (and visit the expression directly) - let mut cols = expr.to_columns()?; + let mut cols = expr.column_refs(); // Get outer-referenced (subquery) columns: outer_columns(expr, &mut cols); self.indices.reserve(cols.len()); for col in cols { - if let Some(idx) = input_schema.maybe_index_of_column(&col) { + if let Some(idx) = input_schema.maybe_index_of_column(col) { self.indices.push(idx); } } diff --git a/datafusion/optimizer/src/optimizer.rs b/datafusion/optimizer/src/optimizer.rs index 998eeb7167ee..14e5ac141eeb 100644 --- a/datafusion/optimizer/src/optimizer.rs +++ b/datafusion/optimizer/src/optimizer.rs @@ -68,7 +68,7 @@ use crate::utils::log_plan; /// `OptimizerRule`s. /// /// [`AnalyzerRule`]: crate::analyzer::AnalyzerRule -/// [`SessionState::add_optimizer_rule`]: https://docs.rs/datafusion/latest/datafusion/execution/context/struct.SessionState.html#method.add_optimizer_rule +/// [`SessionState::add_optimizer_rule`]: https://docs.rs/datafusion/latest/datafusion/execution/session_state/struct.SessionState.html#method.add_optimizer_rule pub trait OptimizerRule { /// Try and rewrite `plan` to an optimized form, returning None if the plan @@ -77,11 +77,17 @@ pub trait OptimizerRule { /// Note this API will be deprecated in the future as it requires `clone`ing /// the input plan, which can be expensive. OptimizerRules should implement /// [`Self::rewrite`] instead. + #[deprecated( + since = "40.0.0", + note = "please implement supports_rewrite and rewrite instead" + )] fn try_optimize( &self, - plan: &LogicalPlan, - config: &dyn OptimizerConfig, - ) -> Result>; + _plan: &LogicalPlan, + _config: &dyn OptimizerConfig, + ) -> Result> { + internal_err!("Should have called rewrite") + } /// A human readable name for this optimizer rule fn name(&self) -> &str; @@ -96,7 +102,7 @@ pub trait OptimizerRule { /// Does this rule support rewriting owned plans (rather than by reference)? fn supports_rewrite(&self) -> bool { - false + true } /// Try to rewrite `plan` to an optimized form, returning `Transformed::yes` @@ -332,6 +338,7 @@ fn optimize_plan_node( return rule.rewrite(plan, config); } + #[allow(deprecated)] rule.try_optimize(&plan, config).map(|maybe_plan| { match maybe_plan { Some(new_plan) => { @@ -483,7 +490,7 @@ mod tests { use std::sync::{Arc, Mutex}; use datafusion_common::tree_node::Transformed; - use datafusion_common::{plan_err, DFSchema, DFSchemaRef, Result}; + use datafusion_common::{plan_err, DFSchema, DFSchemaRef, DataFusionError, Result}; use datafusion_expr::logical_plan::EmptyRelation; use datafusion_expr::{col, lit, LogicalPlan, LogicalPlanBuilder, Projection}; @@ -662,31 +669,27 @@ mod tests { struct BadRule {} impl OptimizerRule for BadRule { - fn try_optimize( - &self, - _: &LogicalPlan, - _: &dyn OptimizerConfig, - ) -> Result> { - plan_err!("rule failed") - } - fn name(&self) -> &str { "bad rule" } + + fn supports_rewrite(&self) -> bool { + true + } + + fn rewrite( + &self, + _plan: LogicalPlan, + _config: &dyn OptimizerConfig, + ) -> Result, DataFusionError> { + plan_err!("rule failed") + } } /// Replaces whatever plan with a single table scan struct GetTableScanRule {} impl OptimizerRule for GetTableScanRule { - fn try_optimize( - &self, - _: &LogicalPlan, - _: &dyn OptimizerConfig, - ) -> Result> { - unreachable!() - } - fn name(&self) -> &str { "get table_scan rule" } @@ -724,14 +727,6 @@ mod tests { } impl OptimizerRule for RotateProjectionRule { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _: &dyn OptimizerConfig, - ) -> Result> { - unreachable!() - } - fn name(&self) -> &str { "rotate_projection" } diff --git a/datafusion/optimizer/src/propagate_empty_relation.rs b/datafusion/optimizer/src/propagate_empty_relation.rs index dfcfc313efcc..6d7521dac777 100644 --- a/datafusion/optimizer/src/propagate_empty_relation.rs +++ b/datafusion/optimizer/src/propagate_empty_relation.rs @@ -21,7 +21,7 @@ use std::sync::Arc; use datafusion_common::tree_node::Transformed; use datafusion_common::JoinType; -use datafusion_common::{internal_err, plan_err, Result}; +use datafusion_common::{plan_err, Result}; use datafusion_expr::logical_plan::tree_node::unwrap_arc; use datafusion_expr::logical_plan::LogicalPlan; use datafusion_expr::{EmptyRelation, Projection, Union}; @@ -41,14 +41,6 @@ impl PropagateEmptyRelation { } impl OptimizerRule for PropagateEmptyRelation { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called PropagateEmptyRelation::rewrite") - } - fn name(&self) -> &str { "propagate_empty_relation" } diff --git a/datafusion/optimizer/src/push_down_filter.rs b/datafusion/optimizer/src/push_down_filter.rs index 295039af2f19..013e74c8fcc0 100644 --- a/datafusion/optimizer/src/push_down_filter.rs +++ b/datafusion/optimizer/src/push_down_filter.rs @@ -561,12 +561,9 @@ fn infer_join_predicates( .filter_map(|predicate| { let mut join_cols_to_replace = HashMap::new(); - let columns = match predicate.to_columns() { - Ok(columns) => columns, - Err(e) => return Some(Err(e)), - }; + let columns = predicate.column_refs(); - for col in columns.iter() { + for &col in columns.iter() { for (l, r) in join_col_keys.iter() { if col == *l { join_cols_to_replace.insert(col, *r); @@ -596,14 +593,6 @@ fn infer_join_predicates( } impl OptimizerRule for PushDownFilter { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called PushDownFilter::rewrite") - } - fn name(&self) -> &str { "push_down_filter" } @@ -693,8 +682,9 @@ impl OptimizerRule for PushDownFilter { insert_below(LogicalPlan::SubqueryAlias(subquery_alias), new_filter) } LogicalPlan::Projection(projection) => { + let predicates = split_conjunction_owned(filter.predicate.clone()); let (new_projection, keep_predicate) = - rewrite_projection(filter.predicate.clone(), projection)?; + rewrite_projection(predicates, projection)?; if new_projection.transformed { match keep_predicate { None => Ok(new_projection), @@ -709,41 +699,54 @@ impl OptimizerRule for PushDownFilter { } } LogicalPlan::Unnest(mut unnest) => { - // collect all the Expr::Column in predicate recursively - let mut accum: HashSet = HashSet::new(); - expr_to_columns(&filter.predicate, &mut accum)?; + let predicates = split_conjunction_owned(filter.predicate.clone()); + let mut non_unnest_predicates = vec![]; + let mut unnest_predicates = vec![]; + for predicate in predicates { + // collect all the Expr::Column in predicate recursively + let mut accum: HashSet = HashSet::new(); + expr_to_columns(&predicate, &mut accum)?; + + if unnest.exec_columns.iter().any(|c| accum.contains(c)) { + unnest_predicates.push(predicate); + } else { + non_unnest_predicates.push(predicate); + } + } - if unnest.exec_columns.iter().any(|c| accum.contains(c)) { + // Unnest predicates should not be pushed down. + // If no non-unnest predicates exist, early return + if non_unnest_predicates.is_empty() { filter.input = Arc::new(LogicalPlan::Unnest(unnest)); return Ok(Transformed::no(LogicalPlan::Filter(filter))); } - // Unnest is built above Projection, so we only take Projection into consideration - match unwrap_arc(unnest.input) { - LogicalPlan::Projection(projection) => { - let (new_projection, keep_predicate) = - rewrite_projection(filter.predicate.clone(), projection)?; - unnest.input = Arc::new(new_projection.data); - - if new_projection.transformed { - match keep_predicate { - None => Ok(Transformed::yes(LogicalPlan::Unnest(unnest))), - Some(keep_predicate) => Ok(Transformed::yes( - LogicalPlan::Filter(Filter::try_new( - keep_predicate, - Arc::new(LogicalPlan::Unnest(unnest)), - )?), - )), - } - } else { - filter.input = Arc::new(LogicalPlan::Unnest(unnest)); - Ok(Transformed::no(LogicalPlan::Filter(filter))) - } - } - child => { - filter.input = Arc::new(child); - Ok(Transformed::no(LogicalPlan::Filter(filter))) - } + // Push down non-unnest filter predicate + // Unnest + // Unenst Input (Projection) + // -> rewritten to + // Unnest + // Filter + // Unenst Input (Projection) + + let unnest_input = std::mem::take(&mut unnest.input); + + let filter_with_unnest_input = LogicalPlan::Filter(Filter::try_new( + conjunction(non_unnest_predicates).unwrap(), // Safe to unwrap since non_unnest_predicates is not empty. + unnest_input, + )?); + + // Directly assign new filter plan as the new unnest's input. + // The new filter plan will go through another rewrite pass since the rule itself + // is applied recursively to all the child from top to down + let unnest_plan = + insert_below(LogicalPlan::Unnest(unnest), filter_with_unnest_input)?; + + match conjunction(unnest_predicates) { + None => Ok(unnest_plan), + Some(predicate) => Ok(Transformed::yes(LogicalPlan::Filter( + Filter::try_new(predicate, Arc::new(unnest_plan.data))?, + ))), } } LogicalPlan::Union(ref union) => { @@ -784,7 +787,7 @@ impl OptimizerRule for PushDownFilter { let mut keep_predicates = vec![]; let mut push_predicates = vec![]; for expr in predicates { - let cols = expr.to_columns()?; + let cols = expr.column_refs(); if cols.iter().all(|c| group_expr_columns.contains(c)) { push_predicates.push(expr); } else { @@ -885,7 +888,7 @@ impl OptimizerRule for PushDownFilter { let predicate_push_or_keep = split_conjunction(&filter.predicate) .iter() .map(|expr| { - let cols = expr.to_columns()?; + let cols = expr.column_refs(); if cols.iter().any(|c| prevent_cols.contains(&c.name)) { Ok(false) // No push (keep) } else { @@ -958,6 +961,10 @@ impl OptimizerRule for PushDownFilter { /// `plan` is a LogicalPlan for `projection` with possibly a new FilterExec below it. /// `remaining_predicate` is any part of the predicate that could not be pushed down /// +/// # Args +/// - predicates: Split predicates like `[foo=5, bar=6]` +/// - projection: The target projection plan to push down the predicates +/// /// # Example /// /// Pushing a predicate like `foo=5 AND bar=6` with an input plan like this: @@ -974,7 +981,7 @@ impl OptimizerRule for PushDownFilter { /// ... /// ``` fn rewrite_projection( - predicate: Expr, + predicates: Vec, projection: Projection, ) -> Result<(Transformed, Option)> { // A projection is filter-commutable if it do not contain volatile predicates or contain volatile @@ -994,7 +1001,7 @@ fn rewrite_projection( let mut push_predicates = vec![]; let mut keep_predicates = vec![]; - for expr in split_conjunction_owned(predicate) { + for expr in predicates { if contain(&expr, &volatile_map) { keep_predicates.push(expr); } else { diff --git a/datafusion/optimizer/src/push_down_limit.rs b/datafusion/optimizer/src/push_down_limit.rs index 6723672ff498..cd2e0b6f5ba2 100644 --- a/datafusion/optimizer/src/push_down_limit.rs +++ b/datafusion/optimizer/src/push_down_limit.rs @@ -24,7 +24,7 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Result}; +use datafusion_common::Result; use datafusion_expr::logical_plan::tree_node::unwrap_arc; use datafusion_expr::logical_plan::{Join, JoinType, Limit, LogicalPlan}; @@ -43,14 +43,6 @@ impl PushDownLimit { /// Push down Limit. impl OptimizerRule for PushDownLimit { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called PushDownLimit::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/replace_distinct_aggregate.rs b/datafusion/optimizer/src/replace_distinct_aggregate.rs index b32a88635395..fcd33be618f7 100644 --- a/datafusion/optimizer/src/replace_distinct_aggregate.rs +++ b/datafusion/optimizer/src/replace_distinct_aggregate.rs @@ -20,7 +20,7 @@ use crate::optimizer::{ApplyOrder, ApplyOrder::BottomUp}; use crate::{OptimizerConfig, OptimizerRule}; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, Column, Result}; +use datafusion_common::{Column, Result}; use datafusion_expr::expr_rewriter::normalize_cols; use datafusion_expr::utils::expand_wildcard; use datafusion_expr::{col, AggregateExt, LogicalPlanBuilder}; @@ -157,14 +157,6 @@ impl OptimizerRule for ReplaceDistinctWithAggregate { } } - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called ReplaceDistinctWithAggregate::rewrite") - } - fn name(&self) -> &str { "replace_distinct_aggregate" } diff --git a/datafusion/optimizer/src/rewrite_disjunctive_predicate.rs b/datafusion/optimizer/src/rewrite_disjunctive_predicate.rs index ba865fa1e944..897afda267dc 100644 --- a/datafusion/optimizer/src/rewrite_disjunctive_predicate.rs +++ b/datafusion/optimizer/src/rewrite_disjunctive_predicate.rs @@ -19,7 +19,6 @@ use crate::optimizer::ApplyOrder; use crate::{OptimizerConfig, OptimizerRule}; -use datafusion_common::internal_err; use datafusion_common::tree_node::Transformed; use datafusion_common::Result; use datafusion_expr::expr::BinaryExpr; @@ -133,14 +132,6 @@ impl RewriteDisjunctivePredicate { } impl OptimizerRule for RewriteDisjunctivePredicate { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called RewriteDisjunctivePredicate::rewrite") - } - fn name(&self) -> &str { "rewrite_disjunctive_predicate" } diff --git a/datafusion/optimizer/src/scalar_subquery_to_join.rs b/datafusion/optimizer/src/scalar_subquery_to_join.rs index 279eca9c912b..0333cc8dde36 100644 --- a/datafusion/optimizer/src/scalar_subquery_to_join.rs +++ b/datafusion/optimizer/src/scalar_subquery_to_join.rs @@ -69,14 +69,6 @@ impl ScalarSubqueryToJoin { } impl OptimizerRule for ScalarSubqueryToJoin { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called ScalarSubqueryToJoin::rewrite") - } - fn supports_rewrite(&self) -> bool { true } diff --git a/datafusion/optimizer/src/simplify_expressions/simplify_exprs.rs b/datafusion/optimizer/src/simplify_expressions/simplify_exprs.rs index d15d12b690da..e650d4c09c23 100644 --- a/datafusion/optimizer/src/simplify_expressions/simplify_exprs.rs +++ b/datafusion/optimizer/src/simplify_expressions/simplify_exprs.rs @@ -20,7 +20,7 @@ use std::sync::Arc; use datafusion_common::tree_node::Transformed; -use datafusion_common::{internal_err, DFSchema, DFSchemaRef, DataFusionError, Result}; +use datafusion_common::{DFSchema, DFSchemaRef, DataFusionError, Result}; use datafusion_expr::execution_props::ExecutionProps; use datafusion_expr::logical_plan::LogicalPlan; use datafusion_expr::simplify::SimplifyContext; @@ -48,14 +48,6 @@ use super::ExprSimplifier; pub struct SimplifyExpressions {} impl OptimizerRule for SimplifyExpressions { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called SimplifyExpressions::rewrite") - } - fn name(&self) -> &str { "simplify_expressions" } diff --git a/datafusion/optimizer/src/single_distinct_to_groupby.rs b/datafusion/optimizer/src/single_distinct_to_groupby.rs index d3d22eb53f39..b3562b7065e1 100644 --- a/datafusion/optimizer/src/single_distinct_to_groupby.rs +++ b/datafusion/optimizer/src/single_distinct_to_groupby.rs @@ -40,12 +40,12 @@ use hashbrown::HashSet; /// single distinct to group by optimizer rule /// ```text /// Before: -/// SELECT a, COUNT(DINSTINCT b), sum(c) +/// SELECT a, count(DINSTINCT b), sum(c) /// FROM t /// GROUP BY a /// /// After: -/// SELECT a, COUNT(alias1), sum(alias2) +/// SELECT a, count(alias1), sum(alias2) /// FROM ( /// SELECT a, b as alias1, sum(c) as alias2 /// FROM t @@ -123,14 +123,6 @@ fn contains_grouping_set(expr: &[Expr]) -> bool { } impl OptimizerRule for SingleDistinctToGroupBy { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called SingleDistinctToGroupBy::rewrite") - } - fn name(&self) -> &str { "single_distinct_aggregation_to_group_by" } @@ -175,7 +167,7 @@ impl OptimizerRule for SingleDistinctToGroupBy { // if from parent operators successfully. // Consider plan below. // - // Aggregate: groupBy=[[group_alias_0]], aggr=[[COUNT(alias1)]] [group_alias_0:Int32, COUNT(alias1):Int64;N]\ + // Aggregate: groupBy=[[group_alias_0]], aggr=[[count(alias1)]] [group_alias_0:Int32, count(alias1):Int64;N]\ // --Aggregate: groupBy=[[test.a + Int32(1) AS group_alias_0, test.c AS alias1]], aggr=[[]] [group_alias_0:Int32, alias1:UInt32]\ // ----TableScan: test [a:UInt32, b:UInt32, c:UInt32] // @@ -183,7 +175,7 @@ impl OptimizerRule for SingleDistinctToGroupBy { // Second aggregate refers to the `group_alias_0` column, Which is a valid field in the first aggregate. // If we were to write plan above as below without alias // - // Aggregate: groupBy=[[test.a + Int32(1)]], aggr=[[COUNT(alias1)]] [group_alias_0:Int32, COUNT(alias1):Int64;N]\ + // Aggregate: groupBy=[[test.a + Int32(1)]], aggr=[[count(alias1)]] [group_alias_0:Int32, count(alias1):Int64;N]\ // --Aggregate: groupBy=[[test.a + Int32(1), test.c AS alias1]], aggr=[[]] [group_alias_0:Int32, alias1:UInt32]\ // ----TableScan: test [a:UInt32, b:UInt32, c:UInt32] // @@ -404,8 +396,8 @@ mod tests { .build()?; // Should work - let expected = "Projection: COUNT(alias1) AS COUNT(DISTINCT test.b) [COUNT(DISTINCT test.b):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(alias1)]] [COUNT(alias1):Int64;N]\ + let expected = "Projection: count(alias1) AS count(DISTINCT test.b) [count(DISTINCT test.b):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(alias1)]] [count(alias1):Int64;N]\ \n Aggregate: groupBy=[[test.b AS alias1]], aggr=[[]] [alias1:UInt32]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -427,7 +419,7 @@ mod tests { .build()?; // Should not be optimized - let expected = "Aggregate: groupBy=[[GROUPING SETS ((test.a), (test.b))]], aggr=[[COUNT(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, COUNT(DISTINCT test.c):Int64;N]\ + let expected = "Aggregate: groupBy=[[GROUPING SETS ((test.a), (test.b))]], aggr=[[count(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, count(DISTINCT test.c):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -445,7 +437,7 @@ mod tests { .build()?; // Should not be optimized - let expected = "Aggregate: groupBy=[[CUBE (test.a, test.b)]], aggr=[[COUNT(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, COUNT(DISTINCT test.c):Int64;N]\ + let expected = "Aggregate: groupBy=[[CUBE (test.a, test.b)]], aggr=[[count(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, count(DISTINCT test.c):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -464,7 +456,7 @@ mod tests { .build()?; // Should not be optimized - let expected = "Aggregate: groupBy=[[ROLLUP (test.a, test.b)]], aggr=[[COUNT(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, COUNT(DISTINCT test.c):Int64;N]\ + let expected = "Aggregate: groupBy=[[ROLLUP (test.a, test.b)]], aggr=[[count(DISTINCT test.c)]] [a:UInt32;N, b:UInt32;N, count(DISTINCT test.c):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -478,8 +470,8 @@ mod tests { .aggregate(Vec::::new(), vec![count_distinct(lit(2) * col("b"))])? .build()?; - let expected = "Projection: COUNT(alias1) AS COUNT(DISTINCT Int32(2) * test.b) [COUNT(DISTINCT Int32(2) * test.b):Int64;N]\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(alias1)]] [COUNT(alias1):Int64;N]\ + let expected = "Projection: count(alias1) AS count(DISTINCT Int32(2) * test.b) [count(DISTINCT Int32(2) * test.b):Int64;N]\ + \n Aggregate: groupBy=[[]], aggr=[[count(alias1)]] [count(alias1):Int64;N]\ \n Aggregate: groupBy=[[Int32(2) * test.b AS alias1]], aggr=[[]] [alias1:Int32]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -495,8 +487,8 @@ mod tests { .build()?; // Should work - let expected = "Projection: test.a, COUNT(alias1) AS COUNT(DISTINCT test.b) [a:UInt32, COUNT(DISTINCT test.b):Int64;N]\ - \n Aggregate: groupBy=[[test.a]], aggr=[[COUNT(alias1)]] [a:UInt32, COUNT(alias1):Int64;N]\ + let expected = "Projection: test.a, count(alias1) AS count(DISTINCT test.b) [a:UInt32, count(DISTINCT test.b):Int64;N]\ + \n Aggregate: groupBy=[[test.a]], aggr=[[count(alias1)]] [a:UInt32, count(alias1):Int64;N]\ \n Aggregate: groupBy=[[test.a, test.b AS alias1]], aggr=[[]] [a:UInt32, alias1:UInt32]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -515,7 +507,7 @@ mod tests { .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.a]], aggr=[[COUNT(DISTINCT test.b), COUNT(DISTINCT test.c)]] [a:UInt32, COUNT(DISTINCT test.b):Int64;N, COUNT(DISTINCT test.c):Int64;N]\ + let expected = "Aggregate: groupBy=[[test.a]], aggr=[[count(DISTINCT test.b), count(DISTINCT test.c)]] [a:UInt32, count(DISTINCT test.b):Int64;N, count(DISTINCT test.c):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -542,8 +534,8 @@ mod tests { )? .build()?; // Should work - let expected = "Projection: test.a, COUNT(alias1) AS COUNT(DISTINCT test.b), MAX(alias1) AS MAX(DISTINCT test.b) [a:UInt32, COUNT(DISTINCT test.b):Int64;N, MAX(DISTINCT test.b):UInt32;N]\ - \n Aggregate: groupBy=[[test.a]], aggr=[[COUNT(alias1), MAX(alias1)]] [a:UInt32, COUNT(alias1):Int64;N, MAX(alias1):UInt32;N]\ + let expected = "Projection: test.a, count(alias1) AS count(DISTINCT test.b), MAX(alias1) AS MAX(DISTINCT test.b) [a:UInt32, count(DISTINCT test.b):Int64;N, MAX(DISTINCT test.b):UInt32;N]\ + \n Aggregate: groupBy=[[test.a]], aggr=[[count(alias1), MAX(alias1)]] [a:UInt32, count(alias1):Int64;N, MAX(alias1):UInt32;N]\ \n Aggregate: groupBy=[[test.a, test.b AS alias1]], aggr=[[]] [a:UInt32, alias1:UInt32]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -562,7 +554,7 @@ mod tests { .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.a]], aggr=[[COUNT(DISTINCT test.b), COUNT(test.c)]] [a:UInt32, COUNT(DISTINCT test.b):Int64;N, COUNT(test.c):Int64;N]\ + let expected = "Aggregate: groupBy=[[test.a]], aggr=[[count(DISTINCT test.b), count(test.c)]] [a:UInt32, count(DISTINCT test.b):Int64;N, count(test.c):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -577,8 +569,8 @@ mod tests { .build()?; // Should work - let expected = "Projection: group_alias_0 AS test.a + Int32(1), COUNT(alias1) AS COUNT(DISTINCT test.c) [test.a + Int32(1):Int32, COUNT(DISTINCT test.c):Int64;N]\ - \n Aggregate: groupBy=[[group_alias_0]], aggr=[[COUNT(alias1)]] [group_alias_0:Int32, COUNT(alias1):Int64;N]\ + let expected = "Projection: group_alias_0 AS test.a + Int32(1), count(alias1) AS count(DISTINCT test.c) [test.a + Int32(1):Int32, count(DISTINCT test.c):Int64;N]\ + \n Aggregate: groupBy=[[group_alias_0]], aggr=[[count(alias1)]] [group_alias_0:Int32, count(alias1):Int64;N]\ \n Aggregate: groupBy=[[test.a + Int32(1) AS group_alias_0, test.c AS alias1]], aggr=[[]] [group_alias_0:Int32, alias1:UInt32]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -607,8 +599,8 @@ mod tests { )? .build()?; // Should work - let expected = "Projection: test.a, sum(alias2) AS sum(test.c), COUNT(alias1) AS COUNT(DISTINCT test.b), MAX(alias1) AS MAX(DISTINCT test.b) [a:UInt32, sum(test.c):UInt64;N, COUNT(DISTINCT test.b):Int64;N, MAX(DISTINCT test.b):UInt32;N]\ - \n Aggregate: groupBy=[[test.a]], aggr=[[sum(alias2), COUNT(alias1), MAX(alias1)]] [a:UInt32, sum(alias2):UInt64;N, COUNT(alias1):Int64;N, MAX(alias1):UInt32;N]\ + let expected = "Projection: test.a, sum(alias2) AS sum(test.c), count(alias1) AS count(DISTINCT test.b), MAX(alias1) AS MAX(DISTINCT test.b) [a:UInt32, sum(test.c):UInt64;N, count(DISTINCT test.b):Int64;N, MAX(DISTINCT test.b):UInt32;N]\ + \n Aggregate: groupBy=[[test.a]], aggr=[[sum(alias2), count(alias1), MAX(alias1)]] [a:UInt32, sum(alias2):UInt64;N, count(alias1):Int64;N, MAX(alias1):UInt32;N]\ \n Aggregate: groupBy=[[test.a, test.b AS alias1]], aggr=[[sum(test.c) AS alias2]] [a:UInt32, alias1:UInt32, alias2:UInt64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -626,8 +618,8 @@ mod tests { )? .build()?; // Should work - let expected = "Projection: test.a, sum(alias2) AS sum(test.c), MAX(alias3) AS MAX(test.c), COUNT(alias1) AS COUNT(DISTINCT test.b) [a:UInt32, sum(test.c):UInt64;N, MAX(test.c):UInt32;N, COUNT(DISTINCT test.b):Int64;N]\ - \n Aggregate: groupBy=[[test.a]], aggr=[[sum(alias2), MAX(alias3), COUNT(alias1)]] [a:UInt32, sum(alias2):UInt64;N, MAX(alias3):UInt32;N, COUNT(alias1):Int64;N]\ + let expected = "Projection: test.a, sum(alias2) AS sum(test.c), MAX(alias3) AS MAX(test.c), count(alias1) AS count(DISTINCT test.b) [a:UInt32, sum(test.c):UInt64;N, MAX(test.c):UInt32;N, count(DISTINCT test.b):Int64;N]\ + \n Aggregate: groupBy=[[test.a]], aggr=[[sum(alias2), MAX(alias3), count(alias1)]] [a:UInt32, sum(alias2):UInt64;N, MAX(alias3):UInt32;N, count(alias1):Int64;N]\ \n Aggregate: groupBy=[[test.a, test.b AS alias1]], aggr=[[sum(test.c) AS alias2, MAX(test.c) AS alias3]] [a:UInt32, alias1:UInt32, alias2:UInt64;N, alias3:UInt32;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -645,8 +637,8 @@ mod tests { )? .build()?; // Should work - let expected = "Projection: test.c, MIN(alias2) AS MIN(test.a), COUNT(alias1) AS COUNT(DISTINCT test.b) [c:UInt32, MIN(test.a):UInt32;N, COUNT(DISTINCT test.b):Int64;N]\ - \n Aggregate: groupBy=[[test.c]], aggr=[[MIN(alias2), COUNT(alias1)]] [c:UInt32, MIN(alias2):UInt32;N, COUNT(alias1):Int64;N]\ + let expected = "Projection: test.c, MIN(alias2) AS MIN(test.a), count(alias1) AS count(DISTINCT test.b) [c:UInt32, MIN(test.a):UInt32;N, count(DISTINCT test.b):Int64;N]\ + \n Aggregate: groupBy=[[test.c]], aggr=[[MIN(alias2), count(alias1)]] [c:UInt32, MIN(alias2):UInt32;N, count(alias1):Int64;N]\ \n Aggregate: groupBy=[[test.c, test.b AS alias1]], aggr=[[MIN(test.a) AS alias2]] [c:UInt32, alias1:UInt32, alias2:UInt32;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; @@ -670,7 +662,7 @@ mod tests { .aggregate(vec![col("c")], vec![expr, count_distinct(col("b"))])? .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a) FILTER (WHERE test.a > Int32(5)), COUNT(DISTINCT test.b)]] [c:UInt32, sum(test.a) FILTER (WHERE test.a > Int32(5)):UInt64;N, COUNT(DISTINCT test.b):Int64;N]\ + let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a) FILTER (WHERE test.a > Int32(5)), count(DISTINCT test.b)]] [c:UInt32, sum(test.a) FILTER (WHERE test.a > Int32(5)):UInt64;N, count(DISTINCT test.b):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -680,7 +672,7 @@ mod tests { fn distinct_with_filter() -> Result<()> { let table_scan = test_table_scan()?; - // COUNT(DISTINCT a) FILTER (WHERE a > 5) + // count(DISTINCT a) FILTER (WHERE a > 5) let expr = count_udaf() .call(vec![col("a")]) .distinct() @@ -690,7 +682,7 @@ mod tests { .aggregate(vec![col("c")], vec![sum(col("a")), expr])? .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), COUNT(DISTINCT test.a) FILTER (WHERE test.a > Int32(5))]] [c:UInt32, sum(test.a):UInt64;N, COUNT(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)):Int64;N]\ + let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), count(DISTINCT test.a) FILTER (WHERE test.a > Int32(5))]] [c:UInt32, sum(test.a):UInt64;N, count(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -713,7 +705,7 @@ mod tests { .aggregate(vec![col("c")], vec![expr, count_distinct(col("b"))])? .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a) ORDER BY [test.a], COUNT(DISTINCT test.b)]] [c:UInt32, sum(test.a) ORDER BY [test.a]:UInt64;N, COUNT(DISTINCT test.b):Int64;N]\ + let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a) ORDER BY [test.a], count(DISTINCT test.b)]] [c:UInt32, sum(test.a) ORDER BY [test.a]:UInt64;N, count(DISTINCT test.b):Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -723,7 +715,7 @@ mod tests { fn distinct_with_order_by() -> Result<()> { let table_scan = test_table_scan()?; - // COUNT(DISTINCT a ORDER BY a) + // count(DISTINCT a ORDER BY a) let expr = count_udaf() .call(vec![col("a")]) .distinct() @@ -733,7 +725,7 @@ mod tests { .aggregate(vec![col("c")], vec![sum(col("a")), expr])? .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), COUNT(DISTINCT test.a) ORDER BY [test.a ASC NULLS LAST]]] [c:UInt32, sum(test.a):UInt64;N, COUNT(DISTINCT test.a) ORDER BY [test.a ASC NULLS LAST]:Int64;N]\ + let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), count(DISTINCT test.a) ORDER BY [test.a ASC NULLS LAST]]] [c:UInt32, sum(test.a):UInt64;N, count(DISTINCT test.a) ORDER BY [test.a ASC NULLS LAST]:Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) @@ -743,7 +735,7 @@ mod tests { fn aggregate_with_filter_and_order_by() -> Result<()> { let table_scan = test_table_scan()?; - // COUNT(DISTINCT a ORDER BY a) FILTER (WHERE a > 5) + // count(DISTINCT a ORDER BY a) FILTER (WHERE a > 5) let expr = count_udaf() .call(vec![col("a")]) .distinct() @@ -754,7 +746,7 @@ mod tests { .aggregate(vec![col("c")], vec![sum(col("a")), expr])? .build()?; // Do nothing - let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), COUNT(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)) ORDER BY [test.a ASC NULLS LAST]]] [c:UInt32, sum(test.a):UInt64;N, COUNT(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)) ORDER BY [test.a ASC NULLS LAST]:Int64;N]\ + let expected = "Aggregate: groupBy=[[test.c]], aggr=[[sum(test.a), count(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)) ORDER BY [test.a ASC NULLS LAST]]] [c:UInt32, sum(test.a):UInt64;N, count(DISTINCT test.a) FILTER (WHERE test.a > Int32(5)) ORDER BY [test.a ASC NULLS LAST]:Int64;N]\ \n TableScan: test [a:UInt32, b:UInt32, c:UInt32]"; assert_optimized_plan_equal(plan, expected) diff --git a/datafusion/optimizer/src/unwrap_cast_in_comparison.rs b/datafusion/optimizer/src/unwrap_cast_in_comparison.rs index 07a946c1add9..fb18518fd226 100644 --- a/datafusion/optimizer/src/unwrap_cast_in_comparison.rs +++ b/datafusion/optimizer/src/unwrap_cast_in_comparison.rs @@ -82,14 +82,6 @@ impl UnwrapCastInComparison { } impl OptimizerRule for UnwrapCastInComparison { - fn try_optimize( - &self, - _plan: &LogicalPlan, - _config: &dyn OptimizerConfig, - ) -> Result> { - internal_err!("Should have called UnwrapCastInComparison::rewrite") - } - fn name(&self) -> &str { "unwrap_cast_in_comparison" } diff --git a/datafusion/optimizer/src/utils.rs b/datafusion/optimizer/src/utils.rs index fd47cb23b108..00aaff196c3b 100644 --- a/datafusion/optimizer/src/utils.rs +++ b/datafusion/optimizer/src/utils.rs @@ -35,6 +35,10 @@ use log::{debug, trace}; /// This also handles the case when the `plan` is a [`LogicalPlan::Explain`]. /// /// Returning `Ok(None)` indicates that the plan can't be optimized by the `optimizer`. +#[deprecated( + since = "40.0.0", + note = "please use OptimizerRule::apply_order with ApplyOrder::BottomUp instead" +)] pub fn optimize_children( optimizer: &impl OptimizerRule, plan: &LogicalPlan, @@ -43,9 +47,16 @@ pub fn optimize_children( let mut new_inputs = Vec::with_capacity(plan.inputs().len()); let mut plan_is_changed = false; for input in plan.inputs() { - let new_input = optimizer.try_optimize(input, config)?; - plan_is_changed = plan_is_changed || new_input.is_some(); - new_inputs.push(new_input.unwrap_or_else(|| input.clone())) + if optimizer.supports_rewrite() { + let new_input = optimizer.rewrite(input.clone(), config)?; + plan_is_changed = plan_is_changed || new_input.transformed; + new_inputs.push(new_input.data); + } else { + #[allow(deprecated)] + let new_input = optimizer.try_optimize(input, config)?; + plan_is_changed = plan_is_changed || new_input.is_some(); + new_inputs.push(new_input.unwrap_or_else(|| input.clone())) + } } if plan_is_changed { let exprs = plan.expressions(); @@ -61,9 +72,9 @@ pub(crate) fn collect_subquery_cols( ) -> Result> { exprs.iter().try_fold(BTreeSet::new(), |mut cols, expr| { let mut using_cols: Vec = vec![]; - for col in expr.to_columns()?.into_iter() { - if subquery_schema.has_column(&col) { - using_cols.push(col); + for col in expr.column_refs().into_iter() { + if subquery_schema.has_column(col) { + using_cols.push(col.clone()); } } diff --git a/datafusion/optimizer/tests/optimizer_integration.rs b/datafusion/optimizer/tests/optimizer_integration.rs index f60bf6609005..70308183306e 100644 --- a/datafusion/optimizer/tests/optimizer_integration.rs +++ b/datafusion/optimizer/tests/optimizer_integration.rs @@ -187,7 +187,7 @@ fn between_date32_plus_interval() -> Result<()> { WHERE col_date32 between '1998-03-18' AND cast('1998-03-18' as date) + INTERVAL '90 days'"; let plan = test_sql(sql)?; let expected = - "Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]]\ + "Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]]\ \n Projection: \ \n Filter: test.col_date32 >= Date32(\"1998-03-18\") AND test.col_date32 <= Date32(\"1998-06-16\")\ \n TableScan: test projection=[col_date32]"; @@ -201,7 +201,7 @@ fn between_date64_plus_interval() -> Result<()> { WHERE col_date64 between '1998-03-18T00:00:00' AND cast('1998-03-18' as date) + INTERVAL '90 days'"; let plan = test_sql(sql)?; let expected = - "Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]]\ + "Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]]\ \n Projection: \ \n Filter: test.col_date64 >= Date64(\"1998-03-18\") AND test.col_date64 <= Date64(\"1998-06-16\")\ \n TableScan: test projection=[col_date64]"; @@ -257,8 +257,8 @@ fn join_keys_in_subquery_alias_1() { fn push_down_filter_groupby_expr_contains_alias() { let sql = "SELECT * FROM (SELECT (col_int32 + col_uint32) AS c, count(*) FROM test GROUP BY 1) where c > 3"; let plan = test_sql(sql).unwrap(); - let expected = "Projection: test.col_int32 + test.col_uint32 AS c, COUNT(*)\ - \n Aggregate: groupBy=[[test.col_int32 + CAST(test.col_uint32 AS Int32)]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]]\ + let expected = "Projection: test.col_int32 + test.col_uint32 AS c, count(*)\ + \n Aggregate: groupBy=[[test.col_int32 + CAST(test.col_uint32 AS Int32)]], aggr=[[count(Int64(1)) AS count(*)]]\ \n Filter: test.col_int32 + CAST(test.col_uint32 AS Int32) > Int32(3)\ \n TableScan: test projection=[col_int32, col_uint32]"; assert_eq!(expected, format!("{plan:?}")); diff --git a/datafusion/physical-expr/src/functions.rs b/datafusion/physical-expr/src/functions.rs index 9c7d6d09349d..e33c28df1988 100644 --- a/datafusion/physical-expr/src/functions.rs +++ b/datafusion/physical-expr/src/functions.rs @@ -38,14 +38,8 @@ use datafusion_common::{Result, ScalarValue}; use datafusion_expr::{ColumnarValue, ScalarFunctionImplementation}; pub use crate::scalar_function::create_physical_expr; - -#[derive(Debug, Clone, Copy)] -pub enum Hint { - /// Indicates the argument needs to be padded if it is scalar - Pad, - /// Indicates the argument can be converted to an array of length 1 - AcceptsSingular, -} +// For backward compatibility +pub use datafusion_expr::function::Hint; #[deprecated(since = "36.0.0", note = "Use ColumarValue::values_to_arrays instead")] pub fn columnar_values_to_array(args: &[ColumnarValue]) -> Result> { diff --git a/datafusion/physical-plan/src/joins/sort_merge_join.rs b/datafusion/physical-plan/src/joins/sort_merge_join.rs index 420fab51da39..91b2151d32e7 100644 --- a/datafusion/physical-plan/src/joins/sort_merge_join.rs +++ b/datafusion/physical-plan/src/joins/sort_merge_join.rs @@ -1532,17 +1532,21 @@ fn get_filtered_join_mask( for i in 0..streamed_indices_length { // LeftSemi respects only first true values for specific streaming index, // others true values for the same index must be false - if mask.value(i) && !seen_as_true { + let streamed_idx = streamed_indices.value(i); + if mask.value(i) + && !seen_as_true + && !matched_indices.contains(&streamed_idx) + { seen_as_true = true; corrected_mask.append_value(true); - filter_matched_indices.push(streamed_indices.value(i)); + filter_matched_indices.push(streamed_idx); } else { corrected_mask.append_value(false); } // if switched to next streaming index(e.g. from 0 to 1, or from 1 to 2), we reset seen_as_true flag if i < streamed_indices_length - 1 - && streamed_indices.value(i) != streamed_indices.value(i + 1) + && streamed_idx != streamed_indices.value(i + 1) { seen_as_true = false; } @@ -2940,6 +2944,20 @@ mod tests { )) ); + assert_eq!( + get_filtered_join_mask( + LeftSemi, + &UInt64Array::from(vec![0, 0, 0, 1, 1, 1]), + &BooleanArray::from(vec![true, false, false, false, false, true]), + &HashSet::from_iter(vec![1]), + &0, + ), + Some(( + BooleanArray::from(vec![true, false, false, false, false, false]), + vec![0] + )) + ); + Ok(()) } diff --git a/datafusion/physical-plan/src/windows/bounded_window_agg_exec.rs b/datafusion/physical-plan/src/windows/bounded_window_agg_exec.rs index fc60ab997375..9eb29891703e 100644 --- a/datafusion/physical-plan/src/windows/bounded_window_agg_exec.rs +++ b/datafusion/physical-plan/src/windows/bounded_window_agg_exec.rs @@ -1653,7 +1653,7 @@ mod tests { // // Effectively following query is run on this data // - // SELECT *, COUNT(*) OVER(PARTITION BY duplicated_hash ORDER BY sn RANGE BETWEEN CURRENT ROW AND 1 FOLLOWING) + // SELECT *, count(*) OVER(PARTITION BY duplicated_hash ORDER BY sn RANGE BETWEEN CURRENT ROW AND 1 FOLLOWING) // FROM test; // // partition `duplicated_hash=2` receives following data from the input @@ -1727,8 +1727,8 @@ mod tests { let plan = projection_exec(window)?; let expected_plan = vec![ - "ProjectionExec: expr=[sn@0 as sn, hash@1 as hash, COUNT([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]@2 as col_2]", - " BoundedWindowAggExec: wdw=[COUNT([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]: Ok(Field { name: \"COUNT([Column { name: \\\"sn\\\", index: 0 }]) PARTITION BY: [[Column { name: \\\"hash\\\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \\\"sn\\\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(UInt64(1)), is_causal: false }], mode=[Linear]", + "ProjectionExec: expr=[sn@0 as sn, hash@1 as hash, count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]@2 as col_2]", + " BoundedWindowAggExec: wdw=[count([Column { name: \"sn\", index: 0 }]) PARTITION BY: [[Column { name: \"hash\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \"sn\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]: Ok(Field { name: \"count([Column { name: \\\"sn\\\", index: 0 }]) PARTITION BY: [[Column { name: \\\"hash\\\", index: 1 }]], ORDER BY: [[PhysicalSortExpr { expr: Column { name: \\\"sn\\\", index: 0 }, options: SortOptions { descending: false, nulls_first: true } }]]\", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: CurrentRow, end_bound: Following(UInt64(1)), is_causal: false }], mode=[Linear]", " StreamingTableExec: partition_sizes=1, projection=[sn, hash], infinite_source=true, output_ordering=[sn@0 ASC NULLS LAST]", ]; diff --git a/datafusion/proto-common/proto/datafusion_common.proto b/datafusion/proto-common/proto/datafusion_common.proto index e523ef1a5e93..225bb9ddf661 100644 --- a/datafusion/proto-common/proto/datafusion_common.proto +++ b/datafusion/proto-common/proto/datafusion_common.proto @@ -385,6 +385,12 @@ message CsvWriterOptions { string time_format = 7; // Optional value to represent null string null_value = 8; + // Optional quote. Defaults to `b'"'` + string quote = 9; + // Optional escape. Defaults to `'\\'` + string escape = 10; + // Optional flag whether to double quotes, instead of escaping. Defaults to `true` + bool double_quote = 11; } // Options controlling CSV format @@ -402,6 +408,7 @@ message CsvOptions { string time_format = 11; // Optional time format string null_value = 12; // Optional representation of null value bytes comment = 13; // Optional comment character as a byte + bytes double_quote = 14; // Indicates if quotes are doubled } // Options controlling CSV format diff --git a/datafusion/proto-common/src/from_proto/mod.rs b/datafusion/proto-common/src/from_proto/mod.rs index be87123fb13f..de9fede9ee86 100644 --- a/datafusion/proto-common/src/from_proto/mod.rs +++ b/datafusion/proto-common/src/from_proto/mod.rs @@ -857,6 +857,7 @@ impl TryFrom<&protobuf::CsvOptions> for CsvOptions { delimiter: proto_opts.delimiter[0], quote: proto_opts.quote[0], escape: proto_opts.escape.first().copied(), + double_quote: proto_opts.has_header.first().map(|h| *h != 0), compression: proto_opts.compression().into(), schema_infer_max_rec: proto_opts.schema_infer_max_rec as usize, date_format: (!proto_opts.date_format.is_empty()) @@ -1091,11 +1092,34 @@ pub(crate) fn csv_writer_options_from_proto( return Err(proto_error("Error parsing CSV Delimiter")); } } + if !writer_options.quote.is_empty() { + if let Some(quote) = writer_options.quote.chars().next() { + if quote.is_ascii() { + builder = builder.with_quote(quote as u8); + } else { + return Err(proto_error("CSV Quote is not ASCII")); + } + } else { + return Err(proto_error("Error parsing CSV Quote")); + } + } + if !writer_options.escape.is_empty() { + if let Some(escape) = writer_options.escape.chars().next() { + if escape.is_ascii() { + builder = builder.with_escape(escape as u8); + } else { + return Err(proto_error("CSV Escape is not ASCII")); + } + } else { + return Err(proto_error("Error parsing CSV Escape")); + } + } Ok(builder .with_header(writer_options.has_header) .with_date_format(writer_options.date_format.clone()) .with_datetime_format(writer_options.datetime_format.clone()) .with_timestamp_format(writer_options.timestamp_format.clone()) .with_time_format(writer_options.time_format.clone()) - .with_null(writer_options.null_value.clone())) + .with_null(writer_options.null_value.clone()) + .with_double_quote(writer_options.double_quote)) } diff --git a/datafusion/proto-common/src/generated/pbjson.rs b/datafusion/proto-common/src/generated/pbjson.rs index ead29d9b92e0..3cf34aeb6d01 100644 --- a/datafusion/proto-common/src/generated/pbjson.rs +++ b/datafusion/proto-common/src/generated/pbjson.rs @@ -1881,6 +1881,9 @@ impl serde::Serialize for CsvOptions { if !self.comment.is_empty() { len += 1; } + if !self.double_quote.is_empty() { + len += 1; + } let mut struct_ser = serializer.serialize_struct("datafusion_common.CsvOptions", len)?; if !self.has_header.is_empty() { #[allow(clippy::needless_borrow)] @@ -1929,6 +1932,10 @@ impl serde::Serialize for CsvOptions { #[allow(clippy::needless_borrow)] struct_ser.serialize_field("comment", pbjson::private::base64::encode(&self.comment).as_str())?; } + if !self.double_quote.is_empty() { + #[allow(clippy::needless_borrow)] + struct_ser.serialize_field("doubleQuote", pbjson::private::base64::encode(&self.double_quote).as_str())?; + } struct_ser.end() } } @@ -1960,6 +1967,8 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { "null_value", "nullValue", "comment", + "double_quote", + "doubleQuote", ]; #[allow(clippy::enum_variant_names)] @@ -1977,6 +1986,7 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { TimeFormat, NullValue, Comment, + DoubleQuote, } impl<'de> serde::Deserialize<'de> for GeneratedField { fn deserialize(deserializer: D) -> std::result::Result @@ -2011,6 +2021,7 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { "timeFormat" | "time_format" => Ok(GeneratedField::TimeFormat), "nullValue" | "null_value" => Ok(GeneratedField::NullValue), "comment" => Ok(GeneratedField::Comment), + "doubleQuote" | "double_quote" => Ok(GeneratedField::DoubleQuote), _ => Err(serde::de::Error::unknown_field(value, FIELDS)), } } @@ -2043,6 +2054,7 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { let mut time_format__ = None; let mut null_value__ = None; let mut comment__ = None; + let mut double_quote__ = None; while let Some(k) = map_.next_key()? { match k { GeneratedField::HasHeader => { @@ -2135,6 +2147,14 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { Some(map_.next_value::<::pbjson::private::BytesDeserialize<_>>()?.0) ; } + GeneratedField::DoubleQuote => { + if double_quote__.is_some() { + return Err(serde::de::Error::duplicate_field("doubleQuote")); + } + double_quote__ = + Some(map_.next_value::<::pbjson::private::BytesDeserialize<_>>()?.0) + ; + } } } Ok(CsvOptions { @@ -2151,6 +2171,7 @@ impl<'de> serde::Deserialize<'de> for CsvOptions { time_format: time_format__.unwrap_or_default(), null_value: null_value__.unwrap_or_default(), comment: comment__.unwrap_or_default(), + double_quote: double_quote__.unwrap_or_default(), }) } } @@ -2189,6 +2210,15 @@ impl serde::Serialize for CsvWriterOptions { if !self.null_value.is_empty() { len += 1; } + if !self.quote.is_empty() { + len += 1; + } + if !self.escape.is_empty() { + len += 1; + } + if self.double_quote { + len += 1; + } let mut struct_ser = serializer.serialize_struct("datafusion_common.CsvWriterOptions", len)?; if self.compression != 0 { let v = CompressionTypeVariant::try_from(self.compression) @@ -2216,6 +2246,15 @@ impl serde::Serialize for CsvWriterOptions { if !self.null_value.is_empty() { struct_ser.serialize_field("nullValue", &self.null_value)?; } + if !self.quote.is_empty() { + struct_ser.serialize_field("quote", &self.quote)?; + } + if !self.escape.is_empty() { + struct_ser.serialize_field("escape", &self.escape)?; + } + if self.double_quote { + struct_ser.serialize_field("doubleQuote", &self.double_quote)?; + } struct_ser.end() } } @@ -2240,6 +2279,10 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { "timeFormat", "null_value", "nullValue", + "quote", + "escape", + "double_quote", + "doubleQuote", ]; #[allow(clippy::enum_variant_names)] @@ -2252,6 +2295,9 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { TimestampFormat, TimeFormat, NullValue, + Quote, + Escape, + DoubleQuote, } impl<'de> serde::Deserialize<'de> for GeneratedField { fn deserialize(deserializer: D) -> std::result::Result @@ -2281,6 +2327,9 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { "timestampFormat" | "timestamp_format" => Ok(GeneratedField::TimestampFormat), "timeFormat" | "time_format" => Ok(GeneratedField::TimeFormat), "nullValue" | "null_value" => Ok(GeneratedField::NullValue), + "quote" => Ok(GeneratedField::Quote), + "escape" => Ok(GeneratedField::Escape), + "doubleQuote" | "double_quote" => Ok(GeneratedField::DoubleQuote), _ => Err(serde::de::Error::unknown_field(value, FIELDS)), } } @@ -2308,6 +2357,9 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { let mut timestamp_format__ = None; let mut time_format__ = None; let mut null_value__ = None; + let mut quote__ = None; + let mut escape__ = None; + let mut double_quote__ = None; while let Some(k) = map_.next_key()? { match k { GeneratedField::Compression => { @@ -2358,6 +2410,24 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { } null_value__ = Some(map_.next_value()?); } + GeneratedField::Quote => { + if quote__.is_some() { + return Err(serde::de::Error::duplicate_field("quote")); + } + quote__ = Some(map_.next_value()?); + } + GeneratedField::Escape => { + if escape__.is_some() { + return Err(serde::de::Error::duplicate_field("escape")); + } + escape__ = Some(map_.next_value()?); + } + GeneratedField::DoubleQuote => { + if double_quote__.is_some() { + return Err(serde::de::Error::duplicate_field("doubleQuote")); + } + double_quote__ = Some(map_.next_value()?); + } } } Ok(CsvWriterOptions { @@ -2369,6 +2439,9 @@ impl<'de> serde::Deserialize<'de> for CsvWriterOptions { timestamp_format: timestamp_format__.unwrap_or_default(), time_format: time_format__.unwrap_or_default(), null_value: null_value__.unwrap_or_default(), + quote: quote__.unwrap_or_default(), + escape: escape__.unwrap_or_default(), + double_quote: double_quote__.unwrap_or_default(), }) } } diff --git a/datafusion/proto-common/src/generated/prost.rs b/datafusion/proto-common/src/generated/prost.rs index b306f3212a2f..57893321e665 100644 --- a/datafusion/proto-common/src/generated/prost.rs +++ b/datafusion/proto-common/src/generated/prost.rs @@ -575,6 +575,15 @@ pub struct CsvWriterOptions { /// Optional value to represent null #[prost(string, tag = "8")] pub null_value: ::prost::alloc::string::String, + /// Optional quote. Defaults to `b'"'` + #[prost(string, tag = "9")] + pub quote: ::prost::alloc::string::String, + /// Optional escape. Defaults to `'\\'` + #[prost(string, tag = "10")] + pub escape: ::prost::alloc::string::String, + /// Optional flag whether to double quote instead of escaping. Defaults to `true` + #[prost(bool, tag = "11")] + pub double_quote: bool, } /// Options controlling CSV format #[allow(clippy::derive_partial_eq_without_eq)] @@ -619,6 +628,9 @@ pub struct CsvOptions { /// Optional comment character as a byte #[prost(bytes = "vec", tag = "13")] pub comment: ::prost::alloc::vec::Vec, + /// Indicates if quotes are doubled + #[prost(bytes = "vec", tag = "14")] + pub double_quote: ::prost::alloc::vec::Vec, } /// Options controlling CSV format #[allow(clippy::derive_partial_eq_without_eq)] diff --git a/datafusion/proto-common/src/to_proto/mod.rs b/datafusion/proto-common/src/to_proto/mod.rs index a3dc826a79ca..877043f66809 100644 --- a/datafusion/proto-common/src/to_proto/mod.rs +++ b/datafusion/proto-common/src/to_proto/mod.rs @@ -896,6 +896,7 @@ impl TryFrom<&CsvOptions> for protobuf::CsvOptions { delimiter: vec![opts.delimiter], quote: vec![opts.quote], escape: opts.escape.map_or_else(Vec::new, |e| vec![e]), + double_quote: opts.double_quote.map_or_else(Vec::new, |h| vec![h as u8]), compression: compression.into(), schema_infer_max_rec: opts.schema_infer_max_rec as u64, date_format: opts.date_format.clone().unwrap_or_default(), @@ -1022,5 +1023,8 @@ pub(crate) fn csv_writer_options_to_proto( timestamp_format: csv_options.timestamp_format().unwrap_or("").to_owned(), time_format: csv_options.time_format().unwrap_or("").to_owned(), null_value: csv_options.null().to_owned(), + quote: (csv_options.quote() as char).to_string(), + escape: (csv_options.escape() as char).to_string(), + double_quote: csv_options.double_quote(), } } diff --git a/datafusion/proto/src/generated/datafusion_proto_common.rs b/datafusion/proto/src/generated/datafusion_proto_common.rs index b306f3212a2f..875fe8992e90 100644 --- a/datafusion/proto/src/generated/datafusion_proto_common.rs +++ b/datafusion/proto/src/generated/datafusion_proto_common.rs @@ -575,6 +575,15 @@ pub struct CsvWriterOptions { /// Optional value to represent null #[prost(string, tag = "8")] pub null_value: ::prost::alloc::string::String, + /// Optional quote. Defaults to `b'"'` + #[prost(string, tag = "9")] + pub quote: ::prost::alloc::string::String, + /// Optional escape. Defaults to `'\\'` + #[prost(string, tag = "10")] + pub escape: ::prost::alloc::string::String, + /// Optional flag whether to double quotes, instead of escaping. Defaults to `true` + #[prost(bool, tag = "11")] + pub double_quote: bool, } /// Options controlling CSV format #[allow(clippy::derive_partial_eq_without_eq)] @@ -619,6 +628,9 @@ pub struct CsvOptions { /// Optional comment character as a byte #[prost(bytes = "vec", tag = "13")] pub comment: ::prost::alloc::vec::Vec, + /// Indicates if quotes are doubled + #[prost(bytes = "vec", tag = "14")] + pub double_quote: ::prost::alloc::vec::Vec, } /// Options controlling CSV format #[allow(clippy::derive_partial_eq_without_eq)] diff --git a/datafusion/proto/src/physical_plan/mod.rs b/datafusion/proto/src/physical_plan/mod.rs index 8a488d30cf24..56e702704798 100644 --- a/datafusion/proto/src/physical_plan/mod.rs +++ b/datafusion/proto/src/physical_plan/mod.rs @@ -1010,7 +1010,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { .as_ref() .ok_or_else(|| proto_error("Missing required field in protobuf"))? .try_into()?; - let sink_schema = convert_required!(sink.sink_schema)?; + let sink_schema = input.schema(); let sort_order = sink .sort_order .as_ref() @@ -1027,7 +1027,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { Ok(Arc::new(DataSinkExec::new( input, Arc::new(data_sink), - Arc::new(sink_schema), + sink_schema, sort_order, ))) } @@ -1040,7 +1040,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { .as_ref() .ok_or_else(|| proto_error("Missing required field in protobuf"))? .try_into()?; - let sink_schema = convert_required!(sink.sink_schema)?; + let sink_schema = input.schema(); let sort_order = sink .sort_order .as_ref() @@ -1057,7 +1057,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { Ok(Arc::new(DataSinkExec::new( input, Arc::new(data_sink), - Arc::new(sink_schema), + sink_schema, sort_order, ))) } @@ -1070,7 +1070,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { .as_ref() .ok_or_else(|| proto_error("Missing required field in protobuf"))? .try_into()?; - let sink_schema = convert_required!(sink.sink_schema)?; + let sink_schema = input.schema(); let sort_order = sink .sort_order .as_ref() @@ -1087,7 +1087,7 @@ impl AsExecutionPlan for protobuf::PhysicalPlanNode { Ok(Arc::new(DataSinkExec::new( input, Arc::new(data_sink), - Arc::new(sink_schema), + sink_schema, sort_order, ))) } diff --git a/datafusion/sql/src/statement.rs b/datafusion/sql/src/statement.rs index d10956efb66c..cb492b390c76 100644 --- a/datafusion/sql/src/statement.rs +++ b/datafusion/sql/src/statement.rs @@ -964,7 +964,7 @@ impl<'a, S: ContextProvider> SqlToRel<'a, S> { self.order_by_to_sort_expr(&expr, schema, planner_context, true, None)?; // Verify that columns of all SortExprs exist in the schema: for expr in expr_vec.iter() { - for column in expr.to_columns()?.iter() { + for column in expr.column_refs().iter() { if !schema.has_column(column) { // Return an error if any column is not in the schema: return plan_err!("Column {column} is not in schema"); diff --git a/datafusion/sql/src/unparser/expr.rs b/datafusion/sql/src/unparser/expr.rs index 65481aed64f9..3ad8759368a2 100644 --- a/datafusion/sql/src/unparser/expr.rs +++ b/datafusion/sql/src/unparser/expr.rs @@ -19,7 +19,9 @@ use arrow::util::display::array_value_to_string; use core::fmt; use std::{fmt::Display, vec}; -use arrow_array::{Date32Array, Date64Array, TimestampNanosecondArray}; +use arrow_array::{ + Date32Array, Date64Array, TimestampMillisecondArray, TimestampNanosecondArray, +}; use arrow_schema::DataType; use sqlparser::ast::Value::SingleQuotedString; use sqlparser::ast::{ @@ -647,6 +649,15 @@ impl Unparser<'_> { } } + fn timestamp_string_to_sql(&self, ts: String) -> Result { + Ok(ast::Expr::Cast { + kind: ast::CastKind::Cast, + expr: Box::new(ast::Expr::Value(SingleQuotedString(ts))), + data_type: ast::DataType::Timestamp(None, TimezoneInfo::None), + format: None, + }) + } + /// DataFusion ScalarValues sometimes require a ast::Expr to construct. /// For example ScalarValue::Date32(d) corresponds to the ast::Expr CAST('datestr' as DATE) fn scalar_to_sql(&self, v: &ScalarValue) -> Result { @@ -808,8 +819,31 @@ impl Unparser<'_> { ScalarValue::TimestampSecond(None, _) => { Ok(ast::Expr::Value(ast::Value::Null)) } - ScalarValue::TimestampMillisecond(Some(_ts), _) => { - not_impl_err!("Unsupported scalar: {v:?}") + ScalarValue::TimestampMillisecond(Some(_ts), tz) => { + let result = if let Some(tz) = tz { + v.to_array()? + .as_any() + .downcast_ref::() + .ok_or(internal_datafusion_err!( + "Unable to downcast to TimestampMillisecond from TimestampMillisecond scalar" + ))? + .value_as_datetime_with_tz(0, tz.parse()?) + .ok_or(internal_datafusion_err!( + "Unable to convert TimestampMillisecond to DateTime" + ))?.to_string() + } else { + v.to_array()? + .as_any() + .downcast_ref::() + .ok_or(internal_datafusion_err!( + "Unable to downcast to TimestampMillisecond from TimestampMillisecond scalar" + ))? + .value_as_datetime(0) + .ok_or(internal_datafusion_err!( + "Unable to convert TimestampMillisecond to NaiveDateTime" + ))?.to_string() + }; + self.timestamp_string_to_sql(result) } ScalarValue::TimestampMillisecond(None, _) => { Ok(ast::Expr::Value(ast::Value::Null)) @@ -844,31 +878,18 @@ impl Unparser<'_> { "Unable to convert TimestampNanosecond to NaiveDateTime" ))?.to_string() }; - Ok(ast::Expr::Cast { - kind: ast::CastKind::Cast, - expr: Box::new(ast::Expr::Value(SingleQuotedString(result))), - data_type: ast::DataType::Timestamp(None, TimezoneInfo::None), - format: None, - }) + self.timestamp_string_to_sql(result) } ScalarValue::TimestampNanosecond(None, _) => { Ok(ast::Expr::Value(ast::Value::Null)) } - ScalarValue::IntervalYearMonth(Some(_i)) => { - not_impl_err!("Unsupported scalar: {v:?}") - } - ScalarValue::IntervalYearMonth(None) => { - Ok(ast::Expr::Value(ast::Value::Null)) - } - ScalarValue::IntervalDayTime(Some(_i)) => { - not_impl_err!("Unsupported scalar: {v:?}") - } - ScalarValue::IntervalDayTime(None) => Ok(ast::Expr::Value(ast::Value::Null)), - ScalarValue::IntervalMonthDayNano(Some(_i)) => { + ScalarValue::IntervalYearMonth(Some(_)) + | ScalarValue::IntervalDayTime(Some(_)) + | ScalarValue::IntervalMonthDayNano(Some(_)) => { let wrap_array = v.to_array()?; let Some(result) = array_value_to_string(&wrap_array, 0).ok() else { return internal_err!( - "Unable to convert IntervalMonthDayNano to string" + "Unable to convert interval scalar value to string" ); }; let interval = Interval { @@ -882,6 +903,10 @@ impl Unparser<'_> { }; Ok(ast::Expr::Interval(interval)) } + ScalarValue::IntervalYearMonth(None) => { + Ok(ast::Expr::Value(ast::Value::Null)) + } + ScalarValue::IntervalDayTime(None) => Ok(ast::Expr::Value(ast::Value::Null)), ScalarValue::IntervalMonthDayNano(None) => { Ok(ast::Expr::Value(ast::Value::Null)) } @@ -1015,10 +1040,10 @@ mod tests { use arrow_schema::DataType::Int8; use datafusion_common::TableReference; use datafusion_expr::{ - case, col, cube, exists, grouping_set, lit, not, not_exists, out_ref_col, - placeholder, rollup, table_scan, try_cast, when, wildcard, ColumnarValue, - ScalarUDF, ScalarUDFImpl, Signature, Volatility, WindowFrame, - WindowFunctionDefinition, + case, col, cube, exists, grouping_set, interval_datetime_lit, + interval_year_month_lit, lit, not, not_exists, out_ref_col, placeholder, rollup, + table_scan, try_cast, when, wildcard, ColumnarValue, ScalarUDF, ScalarUDFImpl, + Signature, Volatility, WindowFrame, WindowFunctionDefinition, }; use datafusion_expr::{interval_month_day_nano_lit, AggregateExt}; use datafusion_functions_aggregate::count::count_udaf; @@ -1180,6 +1205,17 @@ mod tests { Expr::Literal(ScalarValue::Date32(Some(-1))), r#"CAST('1969-12-31' AS DATE)"#, ), + ( + Expr::Literal(ScalarValue::TimestampMillisecond(Some(10001), None)), + r#"CAST('1970-01-01 00:00:10.001' AS TIMESTAMP)"#, + ), + ( + Expr::Literal(ScalarValue::TimestampMillisecond( + Some(10001), + Some("+08:00".into()), + )), + r#"CAST('1970-01-01 08:00:10.001 +08:00' AS TIMESTAMP)"#, + ), ( Expr::Literal(ScalarValue::TimestampNanosecond(Some(10001), None)), r#"CAST('1970-01-01 00:00:00.000010001' AS TIMESTAMP)"#, @@ -1198,7 +1234,7 @@ mod tests { .distinct() .build() .unwrap(), - "COUNT(DISTINCT *)", + "count(DISTINCT *)", ), ( count_udaf() @@ -1206,7 +1242,7 @@ mod tests { .filter(lit(true)) .build() .unwrap(), - "COUNT(*) FILTER (WHERE true)", + "count(*) FILTER (WHERE true)", ), ( Expr::WindowFunction(WindowFunction { @@ -1242,7 +1278,7 @@ mod tests { ), null_treatment: None, }), - r#"COUNT(*) OVER (ORDER BY a DESC NULLS FIRST RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING)"#, + r#"count(*) OVER (ORDER BY a DESC NULLS FIRST RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING)"#, ), (col("a").is_not_null(), r#"a IS NOT NULL"#), (col("a").is_null(), r#"a IS NULL"#), @@ -1345,6 +1381,22 @@ mod tests { .sub(interval_month_day_nano_lit("1 DAY")), r#"(INTERVAL '0 YEARS 1 MONS 0 DAYS 0 HOURS 0 MINS 0.000000000 SECS' - INTERVAL '0 YEARS 0 MONS 1 DAYS 0 HOURS 0 MINS 0.000000000 SECS')"#, ), + ( + interval_datetime_lit("10 DAY 1 HOUR 10 MINUTE 20 SECOND"), + r#"INTERVAL '0 YEARS 0 MONS 10 DAYS 1 HOURS 10 MINS 20.000 SECS'"#, + ), + ( + interval_datetime_lit("10 DAY 1.5 HOUR 10 MINUTE 20 SECOND"), + r#"INTERVAL '0 YEARS 0 MONS 10 DAYS 1 HOURS 40 MINS 20.000 SECS'"#, + ), + ( + interval_year_month_lit("1 YEAR 1 MONTH"), + r#"INTERVAL '1 YEARS 1 MONS 0 DAYS 0 HOURS 0 MINS 0.00 SECS'"#, + ), + ( + interval_year_month_lit("1.5 YEAR 1 MONTH"), + r#"INTERVAL '1 YEARS 7 MONS 0 DAYS 0 HOURS 0 MINS 0.00 SECS'"#, + ), ]; for (expr, expected) in tests { diff --git a/datafusion/sql/tests/sql_integration.rs b/datafusion/sql/tests/sql_integration.rs index 8eb2a2b609e7..3905d7d18424 100644 --- a/datafusion/sql/tests/sql_integration.rs +++ b/datafusion/sql/tests/sql_integration.rs @@ -996,12 +996,12 @@ fn select_aggregate_with_having_with_aggregate_not_in_select() { #[test] fn select_aggregate_with_having_referencing_column_not_in_select() { - let sql = "SELECT COUNT(*) + let sql = "SELECT count(*) FROM person HAVING first_name = 'M'"; let err = logical_plan(sql).expect_err("query should have failed"); assert_eq!( - "Error during planning: HAVING clause references non-aggregate values: Expression person.first_name could not be resolved from available columns: COUNT(*)", + "Error during planning: HAVING clause references non-aggregate values: Expression person.first_name could not be resolved from available columns: count(*)", err.strip_backtrace() ); } @@ -1200,10 +1200,10 @@ fn select_aggregate_with_group_by_with_having_using_count_star_not_in_select() { let sql = "SELECT first_name, MAX(age) FROM person GROUP BY first_name - HAVING MAX(age) > 100 AND COUNT(*) < 50"; + HAVING MAX(age) > 100 AND count(*) < 50"; let expected = "Projection: person.first_name, MAX(person.age)\ - \n Filter: MAX(person.age) > Int64(100) AND COUNT(*) < Int64(50)\ - \n Aggregate: groupBy=[[person.first_name]], aggr=[[MAX(person.age), COUNT(*)]]\ + \n Filter: MAX(person.age) > Int64(100) AND count(*) < Int64(50)\ + \n Aggregate: groupBy=[[person.first_name]], aggr=[[MAX(person.age), count(*)]]\ \n TableScan: person"; quick_test(sql, expected); } @@ -1464,15 +1464,15 @@ fn select_simple_aggregate_with_groupby_and_column_is_in_aggregate_and_groupby() #[test] fn select_simple_aggregate_with_groupby_can_use_positions() { quick_test( - "SELECT state, age AS b, COUNT(1) FROM person GROUP BY 1, 2", - "Projection: person.state, person.age AS b, COUNT(Int64(1))\ - \n Aggregate: groupBy=[[person.state, person.age]], aggr=[[COUNT(Int64(1))]]\ + "SELECT state, age AS b, count(1) FROM person GROUP BY 1, 2", + "Projection: person.state, person.age AS b, count(Int64(1))\ + \n Aggregate: groupBy=[[person.state, person.age]], aggr=[[count(Int64(1))]]\ \n TableScan: person", ); quick_test( - "SELECT state, age AS b, COUNT(1) FROM person GROUP BY 2, 1", - "Projection: person.state, person.age AS b, COUNT(Int64(1))\ - \n Aggregate: groupBy=[[person.age, person.state]], aggr=[[COUNT(Int64(1))]]\ + "SELECT state, age AS b, count(1) FROM person GROUP BY 2, 1", + "Projection: person.state, person.age AS b, count(Int64(1))\ + \n Aggregate: groupBy=[[person.age, person.state]], aggr=[[count(Int64(1))]]\ \n TableScan: person", ); } @@ -1633,18 +1633,18 @@ fn test_wildcard() { #[test] fn select_count_one() { - let sql = "SELECT COUNT(1) FROM person"; - let expected = "Projection: COUNT(Int64(1))\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]]\ + let sql = "SELECT count(1) FROM person"; + let expected = "Projection: count(Int64(1))\ + \n Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]]\ \n TableScan: person"; quick_test(sql, expected); } #[test] fn select_count_column() { - let sql = "SELECT COUNT(id) FROM person"; - let expected = "Projection: COUNT(person.id)\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(person.id)]]\ + let sql = "SELECT count(id) FROM person"; + let expected = "Projection: count(person.id)\ + \n Aggregate: groupBy=[[]], aggr=[[count(person.id)]]\ \n TableScan: person"; quick_test(sql, expected); } @@ -1814,9 +1814,9 @@ fn select_group_by_columns_not_in_select() { #[test] fn select_group_by_count_star() { - let sql = "SELECT state, COUNT(*) FROM person GROUP BY state"; - let expected = "Projection: person.state, COUNT(*)\ - \n Aggregate: groupBy=[[person.state]], aggr=[[COUNT(*)]]\ + let sql = "SELECT state, count(*) FROM person GROUP BY state"; + let expected = "Projection: person.state, count(*)\ + \n Aggregate: groupBy=[[person.state]], aggr=[[count(*)]]\ \n TableScan: person"; quick_test(sql, expected); @@ -1824,10 +1824,10 @@ fn select_group_by_count_star() { #[test] fn select_group_by_needs_projection() { - let sql = "SELECT COUNT(state), state FROM person GROUP BY state"; + let sql = "SELECT count(state), state FROM person GROUP BY state"; let expected = "\ - Projection: COUNT(person.state), person.state\ - \n Aggregate: groupBy=[[person.state]], aggr=[[COUNT(person.state)]]\ + Projection: count(person.state), person.state\ + \n Aggregate: groupBy=[[person.state]], aggr=[[count(person.state)]]\ \n TableScan: person"; quick_test(sql, expected); @@ -3000,8 +3000,8 @@ fn scalar_subquery_reference_outer_field() { let expected = "Projection: j1.j1_string, j2.j2_string\ \n Filter: j1.j1_id = j2.j2_id - Int64(1) AND j2.j2_id < ()\ \n Subquery:\ - \n Projection: COUNT(*)\ - \n Aggregate: groupBy=[[]], aggr=[[COUNT(*)]]\ + \n Projection: count(*)\ + \n Aggregate: groupBy=[[]], aggr=[[count(*)]]\ \n Filter: outer_ref(j2.j2_id) = j1.j1_id AND j1.j1_id = j3.j3_id\ \n CrossJoin:\ \n TableScan: j1\ @@ -3098,19 +3098,19 @@ fn cte_unbalanced_number_of_columns() { #[test] fn aggregate_with_rollup() { let sql = - "SELECT id, state, age, COUNT(*) FROM person GROUP BY id, ROLLUP (state, age)"; - let expected = "Projection: person.id, person.state, person.age, COUNT(*)\ - \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.state, person.age))]], aggr=[[COUNT(*)]]\ + "SELECT id, state, age, count(*) FROM person GROUP BY id, ROLLUP (state, age)"; + let expected = "Projection: person.id, person.state, person.age, count(*)\ + \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.state, person.age))]], aggr=[[count(*)]]\ \n TableScan: person"; quick_test(sql, expected); } #[test] fn aggregate_with_rollup_with_grouping() { - let sql = "SELECT id, state, age, grouping(state), grouping(age), grouping(state) + grouping(age), COUNT(*) \ + let sql = "SELECT id, state, age, grouping(state), grouping(age), grouping(state) + grouping(age), count(*) \ FROM person GROUP BY id, ROLLUP (state, age)"; - let expected = "Projection: person.id, person.state, person.age, GROUPING(person.state), GROUPING(person.age), GROUPING(person.state) + GROUPING(person.age), COUNT(*)\ - \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.state, person.age))]], aggr=[[GROUPING(person.state), GROUPING(person.age), COUNT(*)]]\ + let expected = "Projection: person.id, person.state, person.age, GROUPING(person.state), GROUPING(person.age), GROUPING(person.state) + GROUPING(person.age), count(*)\ + \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.state, person.age))]], aggr=[[GROUPING(person.state), GROUPING(person.age), count(*)]]\ \n TableScan: person"; quick_test(sql, expected); } @@ -3140,9 +3140,9 @@ fn rank_partition_grouping() { #[test] fn aggregate_with_cube() { let sql = - "SELECT id, state, age, COUNT(*) FROM person GROUP BY id, CUBE (state, age)"; - let expected = "Projection: person.id, person.state, person.age, COUNT(*)\ - \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.age), (person.id, person.state, person.age))]], aggr=[[COUNT(*)]]\ + "SELECT id, state, age, count(*) FROM person GROUP BY id, CUBE (state, age)"; + let expected = "Projection: person.id, person.state, person.age, count(*)\ + \n Aggregate: groupBy=[[GROUPING SETS ((person.id), (person.id, person.state), (person.id, person.age), (person.id, person.state, person.age))]], aggr=[[count(*)]]\ \n TableScan: person"; quick_test(sql, expected); } @@ -3157,9 +3157,9 @@ fn round_decimal() { #[test] fn aggregate_with_grouping_sets() { - let sql = "SELECT id, state, age, COUNT(*) FROM person GROUP BY id, GROUPING SETS ((state), (state, age), (id, state))"; - let expected = "Projection: person.id, person.state, person.age, COUNT(*)\ - \n Aggregate: groupBy=[[GROUPING SETS ((person.id, person.state), (person.id, person.state, person.age), (person.id, person.id, person.state))]], aggr=[[COUNT(*)]]\ + let sql = "SELECT id, state, age, count(*) FROM person GROUP BY id, GROUPING SETS ((state), (state, age), (id, state))"; + let expected = "Projection: person.id, person.state, person.age, count(*)\ + \n Aggregate: groupBy=[[GROUPING SETS ((person.id, person.state), (person.id, person.state, person.age), (person.id, person.id, person.state))]], aggr=[[count(*)]]\ \n TableScan: person"; quick_test(sql, expected); } diff --git a/datafusion/sqllogictest/test_files/avro.slt b/datafusion/sqllogictest/test_files/avro.slt index fced1924ced9..f8ef81a8ba2b 100644 --- a/datafusion/sqllogictest/test_files/avro.slt +++ b/datafusion/sqllogictest/test_files/avro.slt @@ -243,11 +243,11 @@ query TT EXPLAIN SELECT count(*) from alltypes_plain ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--TableScan: alltypes_plain projection=[] physical_plan -01)AggregateExec: mode=Final, gby=[], aggr=[COUNT(*)] +01)AggregateExec: mode=Final, gby=[], aggr=[count(*)] 02)--CoalescePartitionsExec -03)----AggregateExec: mode=Partial, gby=[], aggr=[COUNT(*)] +03)----AggregateExec: mode=Partial, gby=[], aggr=[count(*)] 04)------RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=1 05)--------AvroExec: file_groups={1 group: [[WORKSPACE_ROOT/testing/data/avro/alltypes_plain.avro]]} diff --git a/datafusion/sqllogictest/test_files/csv_files.slt b/datafusion/sqllogictest/test_files/csv_files.slt index 8902b3eebf24..a8a689cbb8b5 100644 --- a/datafusion/sqllogictest/test_files/csv_files.slt +++ b/datafusion/sqllogictest/test_files/csv_files.slt @@ -226,3 +226,70 @@ SELECT * from stored_table_with_comments; ---- column1 column2 2 3 + +# read csv with double quote +statement ok +CREATE EXTERNAL TABLE csv_with_double_quote ( +c1 VARCHAR, +c2 VARCHAR +) STORED AS CSV +OPTIONS ('format.delimiter' ',', + 'format.has_header' 'true', + 'format.double_quote' 'true') +LOCATION '../core/tests/data/double_quote.csv'; + +query TT +select * from csv_with_double_quote +---- +id0 "value0" +id1 "value1" +id2 "value2" +id3 "value3" + +# ensure that double quote option is used when writing to csv +query TT +COPY csv_with_double_quote TO 'test_files/scratch/csv_files/table_with_double_quotes.csv' +STORED AS csv +OPTIONS ('format.double_quote' 'true'); +---- +4 + +statement ok +CREATE EXTERNAL TABLE stored_table_with_double_quotes ( +col1 TEXT, +col2 TEXT +) STORED AS CSV +LOCATION 'test_files/scratch/csv_files/table_with_double_quotes.csv' +OPTIONS ('format.double_quote' 'true'); + +query TT +select * from stored_table_with_double_quotes; +---- +id0 "value0" +id1 "value1" +id2 "value2" +id3 "value3" + +# ensure when double quote option is disabled that quotes are escaped instead +query TT +COPY csv_with_double_quote TO 'test_files/scratch/csv_files/table_with_escaped_quotes.csv' +STORED AS csv +OPTIONS ('format.double_quote' 'false', 'format.escape' '#'); +---- +4 + +statement ok +CREATE EXTERNAL TABLE stored_table_with_escaped_quotes ( +col1 TEXT, +col2 TEXT +) STORED AS CSV +LOCATION 'test_files/scratch/csv_files/table_with_escaped_quotes.csv' +OPTIONS ('format.double_quote' 'false', 'format.escape' '#'); + +query TT +select * from stored_table_with_escaped_quotes; +---- +id0 "value0" +id1 "value1" +id2 "value2" +id3 "value3" diff --git a/datafusion/sqllogictest/test_files/explain.slt b/datafusion/sqllogictest/test_files/explain.slt index 3c5f8c7f7ad6..96e73a591678 100644 --- a/datafusion/sqllogictest/test_files/explain.slt +++ b/datafusion/sqllogictest/test_files/explain.slt @@ -93,7 +93,7 @@ query TT EXPLAIN select count(*) from (values ('a', 1, 100), ('a', 2, 150)) as t (c1,c2,c3) ---- physical_plan -01)ProjectionExec: expr=[2 as COUNT(*)] +01)ProjectionExec: expr=[2 as count(*)] 02)--PlaceholderRowExec statement ok diff --git a/datafusion/sqllogictest/test_files/expr.slt b/datafusion/sqllogictest/test_files/expr.slt index d274d7d4390c..4e8f3b59a650 100644 --- a/datafusion/sqllogictest/test_files/expr.slt +++ b/datafusion/sqllogictest/test_files/expr.slt @@ -2473,7 +2473,7 @@ host2 202 host3 303 # TODO: Issue tracked in https://github.com/apache/datafusion/issues/10364 -query error +query TR select t2.server['c3'] as host, sum(( @@ -2488,6 +2488,10 @@ select ) t2 where t2.server['c3'] IS NOT NULL group by t2.server['c3'] order by host; +---- +host1 101 +host2 202 +host3 303 # can have 2 projections with aggr(short_circuited), with different short-circuited expr query TRR @@ -2559,7 +2563,7 @@ host2 2.2 202 host3 3.3 303 # TODO: Issue tracked in https://github.com/apache/datafusion/issues/10364 -query error +query TRR select t2.server['c3'] as host, sum(( @@ -2579,6 +2583,10 @@ select ) t2 where t2.server['c3'] IS NOT NULL group by t2.server['c3'] order by host; +---- +host1 1.1 101 +host2 2.2 202 +host3 3.3 303 # can have 2 projections with aggr(short_circuited), with the same short-circuited expr (e.g. coalesce) query TRR @@ -2587,3 +2595,28 @@ select t2."struct(t1.time,t1.load1,t1.load2,t1.host)"['c3'] as host, sum(coalesc host1 1.1 101 host2 2.2 202 host3 3.3 303 + +statement ok +set datafusion.sql_parser.dialect = 'Postgres'; + +statement ok +create table t (a float) as values (1), (2), (3); + +query TT +explain select min(a) filter (where a > 1) as x from t; +---- +logical_plan +01)Projection: MIN(t.a) FILTER (WHERE t.a > Int64(1)) AS x +02)--Aggregate: groupBy=[[]], aggr=[[MIN(t.a) FILTER (WHERE t.a > Float32(1)) AS MIN(t.a) FILTER (WHERE t.a > Int64(1))]] +03)----TableScan: t projection=[a] +physical_plan +01)ProjectionExec: expr=[MIN(t.a) FILTER (WHERE t.a > Int64(1))@0 as x] +02)--AggregateExec: mode=Single, gby=[], aggr=[MIN(t.a) FILTER (WHERE t.a > Int64(1))] +03)----MemoryExec: partitions=1, partition_sizes=[1] + + +statement ok +drop table t; + +statement ok +set datafusion.sql_parser.dialect = 'Generic'; diff --git a/datafusion/sqllogictest/test_files/group_by.slt b/datafusion/sqllogictest/test_files/group_by.slt index 8ccf3ae85345..b08df0e4b35f 100644 --- a/datafusion/sqllogictest/test_files/group_by.slt +++ b/datafusion/sqllogictest/test_files/group_by.slt @@ -4394,18 +4394,18 @@ EXPLAIN SELECT c1, count(distinct c2), min(distinct c2), sum(c3), max(c4) FROM a ---- logical_plan 01)Sort: aggregate_test_100.c1 ASC NULLS LAST -02)--Projection: aggregate_test_100.c1, COUNT(alias1) AS COUNT(DISTINCT aggregate_test_100.c2), MIN(alias1) AS MIN(DISTINCT aggregate_test_100.c2), sum(alias2) AS sum(aggregate_test_100.c3), MAX(alias3) AS MAX(aggregate_test_100.c4) -03)----Aggregate: groupBy=[[aggregate_test_100.c1]], aggr=[[COUNT(alias1), MIN(alias1), sum(alias2), MAX(alias3)]] +02)--Projection: aggregate_test_100.c1, count(alias1) AS count(DISTINCT aggregate_test_100.c2), MIN(alias1) AS MIN(DISTINCT aggregate_test_100.c2), sum(alias2) AS sum(aggregate_test_100.c3), MAX(alias3) AS MAX(aggregate_test_100.c4) +03)----Aggregate: groupBy=[[aggregate_test_100.c1]], aggr=[[count(alias1), MIN(alias1), sum(alias2), MAX(alias3)]] 04)------Aggregate: groupBy=[[aggregate_test_100.c1, aggregate_test_100.c2 AS alias1]], aggr=[[sum(CAST(aggregate_test_100.c3 AS Int64)) AS alias2, MAX(aggregate_test_100.c4) AS alias3]] 05)--------TableScan: aggregate_test_100 projection=[c1, c2, c3, c4] physical_plan 01)SortPreservingMergeExec: [c1@0 ASC NULLS LAST] 02)--SortExec: expr=[c1@0 ASC NULLS LAST], preserve_partitioning=[true] -03)----ProjectionExec: expr=[c1@0 as c1, COUNT(alias1)@1 as COUNT(DISTINCT aggregate_test_100.c2), MIN(alias1)@2 as MIN(DISTINCT aggregate_test_100.c2), sum(alias2)@3 as sum(aggregate_test_100.c3), MAX(alias3)@4 as MAX(aggregate_test_100.c4)] -04)------AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[COUNT(alias1), MIN(alias1), sum(alias2), MAX(alias3)] +03)----ProjectionExec: expr=[c1@0 as c1, count(alias1)@1 as count(DISTINCT aggregate_test_100.c2), MIN(alias1)@2 as MIN(DISTINCT aggregate_test_100.c2), sum(alias2)@3 as sum(aggregate_test_100.c3), MAX(alias3)@4 as MAX(aggregate_test_100.c4)] +04)------AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[count(alias1), MIN(alias1), sum(alias2), MAX(alias3)] 05)--------CoalesceBatchesExec: target_batch_size=2 06)----------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 -07)------------AggregateExec: mode=Partial, gby=[c1@0 as c1], aggr=[COUNT(alias1), MIN(alias1), sum(alias2), MAX(alias3)] +07)------------AggregateExec: mode=Partial, gby=[c1@0 as c1], aggr=[count(alias1), MIN(alias1), sum(alias2), MAX(alias3)] 08)--------------AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1, alias1@1 as alias1], aggr=[alias2, alias3] 09)----------------CoalesceBatchesExec: target_batch_size=2 10)------------------RepartitionExec: partitioning=Hash([c1@0, alias1@1], 8), input_partitions=8 @@ -5064,3 +5064,74 @@ statement error DataFusion error: Error during planning: Cannot find column with SELECT a, b, COUNT(1) FROM multiple_ordered_table GROUP BY 1, 2, 4, 5, 6; + +statement ok +set datafusion.execution.target_partitions = 1; + +# Create a table that contains various keywords, with their corresponding timestamps +statement ok +CREATE TABLE keywords_stream ( + ts TIMESTAMP, + sn INTEGER PRIMARY KEY, + keyword VARCHAR NOT NULL +); + +statement ok +INSERT INTO keywords_stream(ts, sn, keyword) VALUES +('2024-01-01T00:00:00Z', '0', 'Drug'), +('2024-01-01T00:00:05Z', '1', 'Bomb'), +('2024-01-01T00:00:10Z', '2', 'Theft'), +('2024-01-01T00:00:15Z', '3', 'Gun'), +('2024-01-01T00:00:20Z', '4', 'Calm'); + +# Create a table that contains alert keywords +statement ok +CREATE TABLE ALERT_KEYWORDS(keyword VARCHAR NOT NULL); + +statement ok +INSERT INTO ALERT_KEYWORDS VALUES +('Drug'), +('Bomb'), +('Theft'), +('Gun'), +('Knife'), +('Fire'); + +query TT +explain SELECT + DATE_BIN(INTERVAL '2' MINUTE, ts, '2000-01-01') AS ts_chunk, + COUNT(keyword) AS alert_keyword_count +FROM + keywords_stream +WHERE + keywords_stream.keyword IN (SELECT keyword FROM ALERT_KEYWORDS) +GROUP BY + ts_chunk; +---- +logical_plan +01)Projection: date_bin(IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }"),keywords_stream.ts,Utf8("2000-01-01")) AS ts_chunk, count(keywords_stream.keyword) AS alert_keyword_count +02)--Aggregate: groupBy=[[date_bin(IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }"), keywords_stream.ts, TimestampNanosecond(946684800000000000, None)) AS date_bin(IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }"),keywords_stream.ts,Utf8("2000-01-01"))]], aggr=[[count(keywords_stream.keyword)]] +03)----LeftSemi Join: keywords_stream.keyword = __correlated_sq_1.keyword +04)------TableScan: keywords_stream projection=[ts, keyword] +05)------SubqueryAlias: __correlated_sq_1 +06)--------TableScan: alert_keywords projection=[keyword] +physical_plan +01)ProjectionExec: expr=[date_bin(IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }"),keywords_stream.ts,Utf8("2000-01-01"))@0 as ts_chunk, count(keywords_stream.keyword)@1 as alert_keyword_count] +02)--AggregateExec: mode=Single, gby=[date_bin(IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }, ts@0, 946684800000000000) as date_bin(IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 120000000000 }"),keywords_stream.ts,Utf8("2000-01-01"))], aggr=[count(keywords_stream.keyword)] +03)----CoalesceBatchesExec: target_batch_size=2 +04)------HashJoinExec: mode=CollectLeft, join_type=RightSemi, on=[(keyword@0, keyword@1)] +05)--------MemoryExec: partitions=1, partition_sizes=[1] +06)--------MemoryExec: partitions=1, partition_sizes=[1] + +query PI +SELECT + DATE_BIN(INTERVAL '2' MINUTE, ts, '2000-01-01') AS ts_chunk, + COUNT(keyword) AS alert_keyword_count +FROM + keywords_stream +WHERE + keywords_stream.keyword IN (SELECT keyword FROM ALERT_KEYWORDS) +GROUP BY + ts_chunk; +---- +2024-01-01T00:00:00 4 diff --git a/datafusion/sqllogictest/test_files/insert.slt b/datafusion/sqllogictest/test_files/insert.slt index 1fa319111c45..9115cb532540 100644 --- a/datafusion/sqllogictest/test_files/insert.slt +++ b/datafusion/sqllogictest/test_files/insert.slt @@ -58,17 +58,17 @@ ORDER by c1 ---- logical_plan 01)Dml: op=[Insert Into] table=[table_without_values] -02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 +02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 03)----Sort: aggregate_test_100.c1 ASC NULLS LAST -04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, aggregate_test_100.c1 -05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, aggregate_test_100.c1 +05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 06)----------TableScan: aggregate_test_100 projection=[c1, c4, c9] physical_plan 01)DataSinkExec: sink=MemoryTable (partitions=1) -02)--ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@0 as field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@1 as field2] +02)--ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@0 as field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@1 as field2] 03)----SortPreservingMergeExec: [c1@2 ASC NULLS LAST] -04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, c1@0 as c1] -05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, c1@0 as c1] +05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 06)----------SortExec: expr=[c1@0 ASC NULLS LAST,c9@2 ASC NULLS LAST], preserve_partitioning=[true] 07)------------CoalesceBatchesExec: target_batch_size=8192 08)--------------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 @@ -121,14 +121,14 @@ FROM aggregate_test_100 ---- logical_plan 01)Dml: op=[Insert Into] table=[table_without_values] -02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 -03)----WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 +03)----WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 04)------TableScan: aggregate_test_100 projection=[c1, c4, c9] physical_plan 01)DataSinkExec: sink=MemoryTable (partitions=1) 02)--CoalescePartitionsExec -03)----ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as field2] -04)------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +03)----ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as field2] +04)------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 05)--------SortExec: expr=[c1@0 ASC NULLS LAST,c9@2 ASC NULLS LAST], preserve_partitioning=[true] 06)----------CoalesceBatchesExec: target_batch_size=8192 07)------------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 @@ -171,15 +171,15 @@ logical_plan 01)Dml: op=[Insert Into] table=[table_without_values] 02)--Projection: a1 AS a1, a2 AS a2 03)----Sort: aggregate_test_100.c1 ASC NULLS LAST -04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS a1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS a2, aggregate_test_100.c1 -05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS a1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS a2, aggregate_test_100.c1 +05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 06)----------TableScan: aggregate_test_100 projection=[c1, c4, c9] physical_plan 01)DataSinkExec: sink=MemoryTable (partitions=8) 02)--ProjectionExec: expr=[a1@0 as a1, a2@1 as a2] 03)----SortPreservingMergeExec: [c1@2 ASC NULLS LAST] -04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as a1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as a2, c1@0 as c1] -05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as a1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as a2, c1@0 as c1] +05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 06)----------SortExec: expr=[c1@0 ASC NULLS LAST,c9@2 ASC NULLS LAST], preserve_partitioning=[true] 07)------------CoalesceBatchesExec: target_batch_size=8192 08)--------------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 diff --git a/datafusion/sqllogictest/test_files/insert_to_external.slt b/datafusion/sqllogictest/test_files/insert_to_external.slt index 9f930defbbf9..8f6bafd92e41 100644 --- a/datafusion/sqllogictest/test_files/insert_to_external.slt +++ b/datafusion/sqllogictest/test_files/insert_to_external.slt @@ -347,17 +347,17 @@ ORDER by c1 ---- logical_plan 01)Dml: op=[Insert Into] table=[table_without_values] -02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 +02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 03)----Sort: aggregate_test_100.c1 ASC NULLS LAST -04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, aggregate_test_100.c1 -05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +04)------Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, aggregate_test_100.c1 +05)--------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 06)----------TableScan: aggregate_test_100 projection=[c1, c4, c9] physical_plan 01)DataSinkExec: sink=ParquetSink(file_groups=[]) -02)--ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@0 as field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@1 as field2] +02)--ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@0 as field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@1 as field2] 03)----SortPreservingMergeExec: [c1@2 ASC NULLS LAST] -04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, c1@0 as c1] -05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +04)------ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, c1@0 as c1] +05)--------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 06)----------SortExec: expr=[c1@0 ASC NULLS LAST,c9@2 ASC NULLS LAST], preserve_partitioning=[true] 07)------------CoalesceBatchesExec: target_batch_size=8192 08)--------------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 @@ -411,14 +411,14 @@ FROM aggregate_test_100 ---- logical_plan 01)Dml: op=[Insert Into] table=[table_without_values] -02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 -03)----WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +02)--Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS field2 +03)----WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 04)------TableScan: aggregate_test_100 projection=[c1, c4, c9] physical_plan 01)DataSinkExec: sink=ParquetSink(file_groups=[]) 02)--CoalescePartitionsExec -03)----ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as field1, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as field2] -04)------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +03)----ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as field1, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@4 as field2] +04)------BoundedWindowAggExec: wdw=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c9 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 05)--------SortExec: expr=[c1@0 ASC NULLS LAST,c9@2 ASC NULLS LAST], preserve_partitioning=[true] 06)----------CoalesceBatchesExec: target_batch_size=8192 07)------------RepartitionExec: partitioning=Hash([c1@0], 8), input_partitions=8 diff --git a/datafusion/sqllogictest/test_files/joins.slt b/datafusion/sqllogictest/test_files/joins.slt index 0cecd7935a74..c2949b98aa77 100644 --- a/datafusion/sqllogictest/test_files/joins.slt +++ b/datafusion/sqllogictest/test_files/joins.slt @@ -1343,15 +1343,15 @@ from (select * from join_t1 inner join join_t2 on join_t1.t1_id = join_t2.t2_id) group by t1_id ---- logical_plan -01)Projection: COUNT(*) -02)--Aggregate: groupBy=[[join_t1.t1_id]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Projection: count(*) +02)--Aggregate: groupBy=[[join_t1.t1_id]], aggr=[[count(Int64(1)) AS count(*)]] 03)----Projection: join_t1.t1_id 04)------Inner Join: join_t1.t1_id = join_t2.t2_id 05)--------TableScan: join_t1 projection=[t1_id] 06)--------TableScan: join_t2 projection=[t2_id] physical_plan -01)ProjectionExec: expr=[COUNT(*)@1 as COUNT(*)] -02)--AggregateExec: mode=SinglePartitioned, gby=[t1_id@0 as t1_id], aggr=[COUNT(*)] +01)ProjectionExec: expr=[count(*)@1 as count(*)] +02)--AggregateExec: mode=SinglePartitioned, gby=[t1_id@0 as t1_id], aggr=[count(*)] 03)----CoalesceBatchesExec: target_batch_size=2 04)------HashJoinExec: mode=Partitioned, join_type=Inner, on=[(t1_id@0, t2_id@0)], projection=[t1_id@0] 05)--------CoalesceBatchesExec: target_batch_size=2 @@ -1370,30 +1370,29 @@ from join_t1 inner join join_t2 on join_t1.t1_id = join_t2.t2_id ---- logical_plan -01)Projection: COUNT(alias1) AS COUNT(DISTINCT join_t1.t1_id) -02)--Aggregate: groupBy=[[]], aggr=[[COUNT(alias1)]] +01)Projection: count(alias1) AS count(DISTINCT join_t1.t1_id) +02)--Aggregate: groupBy=[[]], aggr=[[count(alias1)]] 03)----Aggregate: groupBy=[[join_t1.t1_id AS alias1]], aggr=[[]] 04)------Projection: join_t1.t1_id 05)--------Inner Join: join_t1.t1_id = join_t2.t2_id 06)----------TableScan: join_t1 projection=[t1_id] 07)----------TableScan: join_t2 projection=[t2_id] physical_plan -01)ProjectionExec: expr=[COUNT(alias1)@0 as COUNT(DISTINCT join_t1.t1_id)] -02)--AggregateExec: mode=Final, gby=[], aggr=[COUNT(alias1)] +01)ProjectionExec: expr=[count(alias1)@0 as count(DISTINCT join_t1.t1_id)] +02)--AggregateExec: mode=Final, gby=[], aggr=[count(alias1)] 03)----CoalescePartitionsExec -04)------AggregateExec: mode=Partial, gby=[], aggr=[COUNT(alias1)] -05)--------AggregateExec: mode=FinalPartitioned, gby=[alias1@0 as alias1], aggr=[] -06)----------AggregateExec: mode=Partial, gby=[t1_id@0 as alias1], aggr=[] -07)------------CoalesceBatchesExec: target_batch_size=2 -08)--------------HashJoinExec: mode=Partitioned, join_type=Inner, on=[(t1_id@0, t2_id@0)], projection=[t1_id@0] -09)----------------CoalesceBatchesExec: target_batch_size=2 -10)------------------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 -11)--------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 -12)----------------------MemoryExec: partitions=1, partition_sizes=[1] -13)----------------CoalesceBatchesExec: target_batch_size=2 -14)------------------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 -15)--------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 -16)----------------------MemoryExec: partitions=1, partition_sizes=[1] +04)------AggregateExec: mode=Partial, gby=[], aggr=[count(alias1)] +05)--------AggregateExec: mode=SinglePartitioned, gby=[t1_id@0 as alias1], aggr=[] +06)----------CoalesceBatchesExec: target_batch_size=2 +07)------------HashJoinExec: mode=Partitioned, join_type=Inner, on=[(t1_id@0, t2_id@0)], projection=[t1_id@0] +08)--------------CoalesceBatchesExec: target_batch_size=2 +09)----------------RepartitionExec: partitioning=Hash([t1_id@0], 2), input_partitions=2 +10)------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 +11)--------------------MemoryExec: partitions=1, partition_sizes=[1] +12)--------------CoalesceBatchesExec: target_batch_size=2 +13)----------------RepartitionExec: partitioning=Hash([t2_id@0], 2), input_partitions=2 +14)------------------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 +15)--------------------MemoryExec: partitions=1, partition_sizes=[1] statement ok set datafusion.explain.logical_plan_only = true; diff --git a/datafusion/sqllogictest/test_files/json.slt b/datafusion/sqllogictest/test_files/json.slt index 5d3c23d5130b..0b9508310b00 100644 --- a/datafusion/sqllogictest/test_files/json.slt +++ b/datafusion/sqllogictest/test_files/json.slt @@ -49,12 +49,12 @@ query TT EXPLAIN SELECT count(*) from json_test ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--TableScan: json_test projection=[] physical_plan -01)AggregateExec: mode=Final, gby=[], aggr=[COUNT(*)] +01)AggregateExec: mode=Final, gby=[], aggr=[count(*)] 02)--CoalescePartitionsExec -03)----AggregateExec: mode=Partial, gby=[], aggr=[COUNT(*)] +03)----AggregateExec: mode=Partial, gby=[], aggr=[count(*)] 04)------RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=1 05)--------JsonExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/2.json]]} diff --git a/datafusion/sqllogictest/test_files/limit.slt b/datafusion/sqllogictest/test_files/limit.slt index 2c65b1da4474..094017c383a6 100644 --- a/datafusion/sqllogictest/test_files/limit.slt +++ b/datafusion/sqllogictest/test_files/limit.slt @@ -307,11 +307,11 @@ query TT EXPLAIN SELECT COUNT(*) FROM (SELECT a FROM t1 LIMIT 3 OFFSET 11); ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--Limit: skip=11, fetch=3 03)----TableScan: t1 projection=[], fetch=14 physical_plan -01)ProjectionExec: expr=[0 as COUNT(*)] +01)ProjectionExec: expr=[0 as count(*)] 02)--PlaceholderRowExec query I @@ -325,11 +325,11 @@ query TT EXPLAIN SELECT COUNT(*) FROM (SELECT a FROM t1 LIMIT 3 OFFSET 8); ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--Limit: skip=8, fetch=3 03)----TableScan: t1 projection=[], fetch=11 physical_plan -01)ProjectionExec: expr=[2 as COUNT(*)] +01)ProjectionExec: expr=[2 as count(*)] 02)--PlaceholderRowExec query I @@ -343,11 +343,11 @@ query TT EXPLAIN SELECT COUNT(*) FROM (SELECT a FROM t1 OFFSET 8); ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--Limit: skip=8, fetch=None 03)----TableScan: t1 projection=[] physical_plan -01)ProjectionExec: expr=[2 as COUNT(*)] +01)ProjectionExec: expr=[2 as count(*)] 02)--PlaceholderRowExec query I @@ -360,15 +360,15 @@ query TT EXPLAIN SELECT COUNT(*) FROM (SELECT a FROM t1 WHERE a > 3 LIMIT 3 OFFSET 6); ---- logical_plan -01)Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 02)--Projection: 03)----Limit: skip=6, fetch=3 04)------Filter: t1.a > Int32(3) 05)--------TableScan: t1 projection=[a] physical_plan -01)AggregateExec: mode=Final, gby=[], aggr=[COUNT(*)] +01)AggregateExec: mode=Final, gby=[], aggr=[count(*)] 02)--CoalescePartitionsExec -03)----AggregateExec: mode=Partial, gby=[], aggr=[COUNT(*)] +03)----AggregateExec: mode=Partial, gby=[], aggr=[count(*)] 04)------RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=1 05)--------ProjectionExec: expr=[] 06)----------GlobalLimitExec: skip=6, fetch=3 diff --git a/datafusion/sqllogictest/test_files/optimizer_group_by_constant.slt b/datafusion/sqllogictest/test_files/optimizer_group_by_constant.slt index f578b08482ac..ef77bdca1b3e 100644 --- a/datafusion/sqllogictest/test_files/optimizer_group_by_constant.slt +++ b/datafusion/sqllogictest/test_files/optimizer_group_by_constant.slt @@ -48,8 +48,8 @@ FROM test_table t GROUP BY 1, 2, 3, 4 ---- logical_plan -01)Projection: t.c1, Int64(99999), t.c5 + t.c8, Utf8("test"), COUNT(Int64(1)) -02)--Aggregate: groupBy=[[t.c1, t.c5 + t.c8]], aggr=[[COUNT(Int64(1))]] +01)Projection: t.c1, Int64(99999), t.c5 + t.c8, Utf8("test"), count(Int64(1)) +02)--Aggregate: groupBy=[[t.c1, t.c5 + t.c8]], aggr=[[count(Int64(1))]] 03)----SubqueryAlias: t 04)------TableScan: test_table projection=[c1, c5, c8] @@ -60,8 +60,8 @@ FROM test_table t group by 1, 2, 3 ---- logical_plan -01)Projection: Int64(123), Int64(456), Int64(789), COUNT(Int64(1)), AVG(t.c12) -02)--Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)), AVG(t.c12)]] +01)Projection: Int64(123), Int64(456), Int64(789), count(Int64(1)), AVG(t.c12) +02)--Aggregate: groupBy=[[]], aggr=[[count(Int64(1)), AVG(t.c12)]] 03)----SubqueryAlias: t 04)------TableScan: test_table projection=[c12] @@ -72,8 +72,8 @@ FROM test_table t GROUP BY 1, 2 ---- logical_plan -01)Projection: Date32("2023-05-04") AS dt, Boolean(true) AS today_filter, COUNT(Int64(1)) -02)--Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]] +01)Projection: Date32("2023-05-04") AS dt, Boolean(true) AS today_filter, count(Int64(1)) +02)--Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]] 03)----SubqueryAlias: t 04)------TableScan: test_table projection=[] @@ -90,8 +90,8 @@ FROM test_table t GROUP BY 1 ---- logical_plan -01)Projection: Boolean(true) AS NOT date_part(Utf8("MONTH"),now()) BETWEEN Int64(50) AND Int64(60), COUNT(Int64(1)) -02)--Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]] +01)Projection: Boolean(true) AS NOT date_part(Utf8("MONTH"),now()) BETWEEN Int64(50) AND Int64(60), count(Int64(1)) +02)--Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]] 03)----SubqueryAlias: t 04)------TableScan: test_table projection=[] diff --git a/datafusion/sqllogictest/test_files/predicates.slt b/datafusion/sqllogictest/test_files/predicates.slt index ac0dc3018879..4e8f0eb6caaa 100644 --- a/datafusion/sqllogictest/test_files/predicates.slt +++ b/datafusion/sqllogictest/test_files/predicates.slt @@ -748,7 +748,7 @@ OR GROUP BY p_partkey; ---- logical_plan -01)Aggregate: groupBy=[[part.p_partkey]], aggr=[[sum(lineitem.l_extendedprice), AVG(lineitem.l_discount), COUNT(DISTINCT partsupp.ps_suppkey)]] +01)Aggregate: groupBy=[[part.p_partkey]], aggr=[[sum(lineitem.l_extendedprice), AVG(lineitem.l_discount), count(DISTINCT partsupp.ps_suppkey)]] 02)--Projection: lineitem.l_extendedprice, lineitem.l_discount, part.p_partkey, partsupp.ps_suppkey 03)----Inner Join: part.p_partkey = partsupp.ps_partkey 04)------Projection: lineitem.l_extendedprice, lineitem.l_discount, part.p_partkey @@ -759,7 +759,7 @@ logical_plan 09)--------------TableScan: part projection=[p_partkey, p_brand], partial_filters=[part.p_brand = Utf8("Brand#12") OR part.p_brand = Utf8("Brand#23")] 10)------TableScan: partsupp projection=[ps_partkey, ps_suppkey] physical_plan -01)AggregateExec: mode=SinglePartitioned, gby=[p_partkey@2 as p_partkey], aggr=[sum(lineitem.l_extendedprice), AVG(lineitem.l_discount), COUNT(DISTINCT partsupp.ps_suppkey)] +01)AggregateExec: mode=SinglePartitioned, gby=[p_partkey@2 as p_partkey], aggr=[sum(lineitem.l_extendedprice), AVG(lineitem.l_discount), count(DISTINCT partsupp.ps_suppkey)] 02)--CoalesceBatchesExec: target_batch_size=8192 03)----HashJoinExec: mode=Partitioned, join_type=Inner, on=[(p_partkey@2, ps_partkey@0)], projection=[l_extendedprice@0, l_discount@1, p_partkey@2, ps_suppkey@4] 04)------CoalesceBatchesExec: target_batch_size=8192 diff --git a/datafusion/sqllogictest/test_files/push_down_filter.slt b/datafusion/sqllogictest/test_files/push_down_filter.slt index 5029ab170a18..3ca187ddee84 100644 --- a/datafusion/sqllogictest/test_files/push_down_filter.slt +++ b/datafusion/sqllogictest/test_files/push_down_filter.slt @@ -67,17 +67,34 @@ select uc2, column1 from (select unnest(column2) as uc2, column1 from v) where 5 2 # Could push the filter (column1 = 2) down below unnest -# https://github.com/apache/datafusion/issues/11016 query TT explain select uc2, column1 from (select unnest(column2) as uc2, column1 from v) where uc2 > 3 AND column1 = 2; ---- logical_plan 01)Projection: unnest(v.column2) AS uc2, v.column1 -02)--Filter: unnest(v.column2) > Int64(3) AND v.column1 = Int64(2) +02)--Filter: unnest(v.column2) > Int64(3) 03)----Unnest: lists[unnest(v.column2)] structs[] 04)------Projection: v.column2 AS unnest(v.column2), v.column1 -05)--------TableScan: v projection=[column1, column2] +05)--------Filter: v.column1 = Int64(2) +06)----------TableScan: v projection=[column1, column2] + +query II +select uc2, column1 from (select unnest(column2) as uc2, column1 from v) where uc2 > 3 OR column1 = 2; +---- +3 2 +4 2 +5 2 +# only non-unnest filter in AND clause could be pushed down +query TT +explain select uc2, column1 from (select unnest(column2) as uc2, column1 from v) where uc2 > 3 OR column1 = 2; +---- +logical_plan +01)Projection: unnest(v.column2) AS uc2, v.column1 +02)--Filter: unnest(v.column2) > Int64(3) OR v.column1 = Int64(2) +03)----Unnest: lists[unnest(v.column2)] structs[] +04)------Projection: v.column2 AS unnest(v.column2), v.column1 +05)--------TableScan: v projection=[column1, column2] statement ok drop table v; diff --git a/datafusion/sqllogictest/test_files/scalar.slt b/datafusion/sqllogictest/test_files/scalar.slt index 04b0fa8acab0..551c50e0a17b 100644 --- a/datafusion/sqllogictest/test_files/scalar.slt +++ b/datafusion/sqllogictest/test_files/scalar.slt @@ -474,6 +474,16 @@ select gcd(null, null); ---- NULL +# scalar maxes and/or negative 1 +query III rowsort +select + gcd(9223372036854775807, -9223372036854775808), -- i64::MIN, i64::MAX + -- wait till fix, cause it fails gcd(-9223372036854775808, -9223372036854775808), -- -i64::MIN, i64::MIN + gcd(9223372036854775807, -1), -- i64::MAX, -1 + gcd(-9223372036854775808, -1); -- i64::MIN, -1 +---- +1 1 1 + # gcd with columns query III rowsort select gcd(a, b), gcd(c, d), gcd(e, f) from signed_integers; diff --git a/datafusion/sqllogictest/test_files/select.slt b/datafusion/sqllogictest/test_files/select.slt index c8ef2b7f5e0b..f9baf8db69d5 100644 --- a/datafusion/sqllogictest/test_files/select.slt +++ b/datafusion/sqllogictest/test_files/select.slt @@ -1383,16 +1383,16 @@ ORDER BY c1, c2) GROUP BY c2; ---- logical_plan -01)Aggregate: groupBy=[[aggregate_test_100.c2]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Aggregate: groupBy=[[aggregate_test_100.c2]], aggr=[[count(Int64(1)) AS count(*)]] 02)--Projection: aggregate_test_100.c2 03)----Sort: aggregate_test_100.c1 ASC NULLS LAST, aggregate_test_100.c2 ASC NULLS LAST 04)------Projection: aggregate_test_100.c2, aggregate_test_100.c1 05)--------TableScan: aggregate_test_100 projection=[c1, c2] physical_plan -01)AggregateExec: mode=FinalPartitioned, gby=[c2@0 as c2], aggr=[COUNT(*)] +01)AggregateExec: mode=FinalPartitioned, gby=[c2@0 as c2], aggr=[count(*)] 02)--CoalesceBatchesExec: target_batch_size=8192 03)----RepartitionExec: partitioning=Hash([c2@0], 2), input_partitions=2 -04)------AggregateExec: mode=Partial, gby=[c2@0 as c2], aggr=[COUNT(*)] +04)------AggregateExec: mode=Partial, gby=[c2@0 as c2], aggr=[count(*)] 05)--------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 06)----------CsvExec: file_groups={1 group: [[WORKSPACE_ROOT/testing/data/csv/aggregate_test_100.csv]]}, projection=[c2], has_header=true diff --git a/datafusion/sqllogictest/test_files/subquery.slt b/datafusion/sqllogictest/test_files/subquery.slt index dbdb7fc76b8b..f56729f85e1c 100644 --- a/datafusion/sqllogictest/test_files/subquery.slt +++ b/datafusion/sqllogictest/test_files/subquery.slt @@ -530,9 +530,9 @@ logical_plan 01)Projection: t1.t1_id, t1.t1_name 02)--Filter: EXISTS () 03)----Subquery: -04)------Projection: COUNT(*) +04)------Projection: count(*) 05)--------Filter: sum(outer_ref(t1.t1_int) + t2.t2_id) > Int64(0) -06)----------Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*), sum(CAST(outer_ref(t1.t1_int) + t2.t2_id AS Int64))]] +06)----------Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*), sum(CAST(outer_ref(t1.t1_int) + t2.t2_id AS Int64))]] 07)------------Filter: outer_ref(t1.t1_name) = t2.t2_name 08)--------------TableScan: t2 09)----TableScan: t1 projection=[t1_id, t1_name, t1_int] @@ -717,9 +717,9 @@ query TT explain select (select count(*) from t1) as b ---- logical_plan -01)Projection: __scalar_sq_1.COUNT(*) AS b +01)Projection: __scalar_sq_1.count(*) AS b 02)--SubqueryAlias: __scalar_sq_1 -03)----Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +03)----Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 04)------TableScan: t1 projection=[] #simple_uncorrelated_scalar_subquery2 @@ -727,13 +727,13 @@ query TT explain select (select count(*) from t1) as b, (select count(1) from t2) ---- logical_plan -01)Projection: __scalar_sq_1.COUNT(*) AS b, __scalar_sq_2.COUNT(Int64(1)) AS COUNT(Int64(1)) +01)Projection: __scalar_sq_1.count(*) AS b, __scalar_sq_2.count(Int64(1)) AS count(Int64(1)) 02)--Left Join: 03)----SubqueryAlias: __scalar_sq_1 -04)------Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +04)------Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 05)--------TableScan: t1 projection=[] 06)----SubqueryAlias: __scalar_sq_2 -07)------Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]] +07)------Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]] 08)--------TableScan: t2 projection=[] statement ok @@ -743,20 +743,20 @@ query TT explain select (select count(*) from t1) as b, (select count(1) from t2) ---- logical_plan -01)Projection: __scalar_sq_1.COUNT(*) AS b, __scalar_sq_2.COUNT(Int64(1)) AS COUNT(Int64(1)) +01)Projection: __scalar_sq_1.count(*) AS b, __scalar_sq_2.count(Int64(1)) AS count(Int64(1)) 02)--Left Join: 03)----SubqueryAlias: __scalar_sq_1 -04)------Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +04)------Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 05)--------TableScan: t1 projection=[] 06)----SubqueryAlias: __scalar_sq_2 -07)------Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1))]] +07)------Aggregate: groupBy=[[]], aggr=[[count(Int64(1))]] 08)--------TableScan: t2 projection=[] physical_plan -01)ProjectionExec: expr=[COUNT(*)@0 as b, COUNT(Int64(1))@1 as COUNT(Int64(1))] +01)ProjectionExec: expr=[count(*)@0 as b, count(Int64(1))@1 as count(Int64(1))] 02)--NestedLoopJoinExec: join_type=Left -03)----ProjectionExec: expr=[4 as COUNT(*)] +03)----ProjectionExec: expr=[4 as count(*)] 04)------PlaceholderRowExec -05)----ProjectionExec: expr=[4 as COUNT(Int64(1))] +05)----ProjectionExec: expr=[4 as count(Int64(1))] 06)------PlaceholderRowExec statement ok @@ -772,12 +772,12 @@ query TT explain SELECT t1_id, (SELECT count(*) FROM t2 WHERE t2.t2_int = t1.t1_int) from t1 ---- logical_plan -01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.COUNT(*) END AS COUNT(*) +01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.count(*) END AS count(*) 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*), t2.t2_int, Boolean(true) AS __always_true -06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*), t2.t2_int, Boolean(true) AS __always_true +06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 07)----------TableScan: t2 projection=[t2_int] query II rowsort @@ -794,12 +794,12 @@ query TT explain SELECT t1_id, (SELECT count(*) FROM t2 WHERE t2.t2_int = t1.t1_int) as cnt from t1 ---- logical_plan -01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.COUNT(*) END AS cnt +01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.count(*) END AS cnt 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*), t2.t2_int, Boolean(true) AS __always_true -06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*), t2.t2_int, Boolean(true) AS __always_true +06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 07)----------TableScan: t2 projection=[t2_int] query II rowsort @@ -819,8 +819,8 @@ logical_plan 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*) AS _cnt, t2.t2_int, Boolean(true) AS __always_true -06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*) AS _cnt, t2.t2_int, Boolean(true) AS __always_true +06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 07)----------TableScan: t2 projection=[t2_int] query II rowsort @@ -840,8 +840,8 @@ logical_plan 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*) + Int64(2) AS _cnt, t2.t2_int, Boolean(true) AS __always_true -06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*) + Int64(2) AS _cnt, t2.t2_int, Boolean(true) AS __always_true +06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 07)----------TableScan: t2 projection=[t2_int] query II rowsort @@ -858,13 +858,13 @@ explain select t1.t1_int from t1 where (select count(*) from t2 where t1.t1_id = ---- logical_plan 01)Projection: t1.t1_int -02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.COUNT(*) END < CAST(t1.t1_int AS Int64) -03)----Projection: t1.t1_int, __scalar_sq_1.COUNT(*), __scalar_sq_1.__always_true +02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.count(*) END < CAST(t1.t1_int AS Int64) +03)----Projection: t1.t1_int, __scalar_sq_1.count(*), __scalar_sq_1.__always_true 04)------Left Join: t1.t1_id = __scalar_sq_1.t2_id 05)--------TableScan: t1 projection=[t1_id, t1_int] 06)--------SubqueryAlias: __scalar_sq_1 -07)----------Projection: COUNT(*), t2.t2_id, Boolean(true) AS __always_true -08)------------Aggregate: groupBy=[[t2.t2_id]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +07)----------Projection: count(*), t2.t2_id, Boolean(true) AS __always_true +08)------------Aggregate: groupBy=[[t2.t2_id]], aggr=[[count(Int64(1)) AS count(*)]] 09)--------------TableScan: t2 projection=[t2_id] query I rowsort @@ -884,9 +884,9 @@ logical_plan 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*) + Int64(2) AS cnt_plus_2, t2.t2_int -06)--------Filter: COUNT(*) > Int64(1) -07)----------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*) + Int64(2) AS cnt_plus_2, t2.t2_int +06)--------Filter: count(*) > Int64(1) +07)----------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 08)------------TableScan: t2 projection=[t2_int] query II rowsort @@ -903,12 +903,12 @@ query TT explain SELECT t1_id, (SELECT count(*) + 2 as cnt_plus_2 FROM t2 WHERE t2.t2_int = t1.t1_int having count(*) = 0) from t1 ---- logical_plan -01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(2) AS cnt_plus_2 WHEN __scalar_sq_1.COUNT(*) != Int64(0) THEN NULL ELSE __scalar_sq_1.cnt_plus_2 END AS cnt_plus_2 +01)Projection: t1.t1_id, CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(2) AS cnt_plus_2 WHEN __scalar_sq_1.count(*) != Int64(0) THEN NULL ELSE __scalar_sq_1.cnt_plus_2 END AS cnt_plus_2 02)--Left Join: t1.t1_int = __scalar_sq_1.t2_int 03)----TableScan: t1 projection=[t1_id, t1_int] 04)----SubqueryAlias: __scalar_sq_1 -05)------Projection: COUNT(*) + Int64(2) AS cnt_plus_2, t2.t2_int, COUNT(*), Boolean(true) AS __always_true -06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +05)------Projection: count(*) + Int64(2) AS cnt_plus_2, t2.t2_int, count(*), Boolean(true) AS __always_true +06)--------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 07)----------TableScan: t2 projection=[t2_int] query II rowsort @@ -925,14 +925,14 @@ explain select t1.t1_int from t1 group by t1.t1_int having (select count(*) from ---- logical_plan 01)Projection: t1.t1_int -02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.COUNT(*) END = Int64(0) -03)----Projection: t1.t1_int, __scalar_sq_1.COUNT(*), __scalar_sq_1.__always_true +02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(0) ELSE __scalar_sq_1.count(*) END = Int64(0) +03)----Projection: t1.t1_int, __scalar_sq_1.count(*), __scalar_sq_1.__always_true 04)------Left Join: t1.t1_int = __scalar_sq_1.t2_int 05)--------Aggregate: groupBy=[[t1.t1_int]], aggr=[[]] 06)----------TableScan: t1 projection=[t1_int] 07)--------SubqueryAlias: __scalar_sq_1 -08)----------Projection: COUNT(*), t2.t2_int, Boolean(true) AS __always_true -09)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +08)----------Projection: count(*), t2.t2_int, Boolean(true) AS __always_true +09)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 10)--------------TableScan: t2 projection=[t2_int] query I rowsort @@ -952,8 +952,8 @@ logical_plan 04)------Left Join: t1.t1_int = __scalar_sq_1.t2_int 05)--------TableScan: t1 projection=[t1_int] 06)--------SubqueryAlias: __scalar_sq_1 -07)----------Projection: COUNT(*) AS cnt, t2.t2_int, Boolean(true) AS __always_true -08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +07)----------Projection: count(*) AS cnt, t2.t2_int, Boolean(true) AS __always_true +08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 09)--------------TableScan: t2 projection=[t2_int] @@ -977,13 +977,13 @@ select t1.t1_int from t1 where ( ---- logical_plan 01)Projection: t1.t1_int -02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(2) WHEN __scalar_sq_1.COUNT(*) != Int64(0) THEN NULL ELSE __scalar_sq_1.cnt_plus_two END = Int64(2) -03)----Projection: t1.t1_int, __scalar_sq_1.cnt_plus_two, __scalar_sq_1.COUNT(*), __scalar_sq_1.__always_true +02)--Filter: CASE WHEN __scalar_sq_1.__always_true IS NULL THEN Int64(2) WHEN __scalar_sq_1.count(*) != Int64(0) THEN NULL ELSE __scalar_sq_1.cnt_plus_two END = Int64(2) +03)----Projection: t1.t1_int, __scalar_sq_1.cnt_plus_two, __scalar_sq_1.count(*), __scalar_sq_1.__always_true 04)------Left Join: t1.t1_int = __scalar_sq_1.t2_int 05)--------TableScan: t1 projection=[t1_int] 06)--------SubqueryAlias: __scalar_sq_1 -07)----------Projection: COUNT(*) + Int64(1) + Int64(1) AS cnt_plus_two, t2.t2_int, COUNT(*), Boolean(true) AS __always_true -08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +07)----------Projection: count(*) + Int64(1) + Int64(1) AS cnt_plus_two, t2.t2_int, count(*), Boolean(true) AS __always_true +08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 09)--------------TableScan: t2 projection=[t2_int] query I rowsort @@ -1011,8 +1011,8 @@ logical_plan 04)------Left Join: t1.t1_int = __scalar_sq_1.t2_int 05)--------TableScan: t1 projection=[t1_int] 06)--------SubqueryAlias: __scalar_sq_1 -07)----------Projection: CASE WHEN COUNT(*) = Int64(1) THEN Int64(NULL) ELSE COUNT(*) END AS cnt, t2.t2_int, Boolean(true) AS __always_true -08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +07)----------Projection: CASE WHEN count(*) = Int64(1) THEN Int64(NULL) ELSE count(*) END AS cnt, t2.t2_int, Boolean(true) AS __always_true +08)------------Aggregate: groupBy=[[t2.t2_int]], aggr=[[count(Int64(1)) AS count(*)]] 09)--------------TableScan: t2 projection=[t2_int] diff --git a/datafusion/sqllogictest/test_files/timestamps.slt b/datafusion/sqllogictest/test_files/timestamps.slt index 7d5d601bbfdd..2216dbfa5fd5 100644 --- a/datafusion/sqllogictest/test_files/timestamps.slt +++ b/datafusion/sqllogictest/test_files/timestamps.slt @@ -2774,6 +2774,26 @@ SELECT '2000-12-01 04:04:12' AT TIME ZONE 'America/New_York'; ---- 2000-12-01T04:04:12-05:00 +query P +SELECT '2024-03-30 00:00:20' AT TIME ZONE 'Europe/Brussels'; +---- +2024-03-30T00:00:20+01:00 + +query P +SELECT '2024-03-30 00:00:20'::timestamp AT TIME ZONE 'Europe/Brussels'; +---- +2024-03-30T00:00:20+01:00 + +query P +SELECT '2024-03-30 00:00:20Z' AT TIME ZONE 'Europe/Brussels'; +---- +2024-03-30T01:00:20+01:00 + +query P +SELECT '2024-03-30 00:00:20Z'::timestamp AT TIME ZONE 'Europe/Brussels'; +---- +2024-03-30T00:00:20+01:00 + ## date-time strings that already have a explicit timezone can be used with AT TIME ZONE # same time zone as provided date-time @@ -2801,3 +2821,26 @@ query B select current_time = current_time; ---- true + +# Test temporal coercion for UTC +query ? +select arrow_cast('2024-06-17T11:00:00', 'Timestamp(Nanosecond, Some("UTC"))') - arrow_cast('2024-06-17T12:00:00', 'Timestamp(Microsecond, Some("UTC"))'); +---- +0 days -1 hours 0 mins 0.000000 secs + +query ? +select arrow_cast('2024-06-17T13:00:00', 'Timestamp(Nanosecond, Some("+00:00"))') - arrow_cast('2024-06-17T12:00:00', 'Timestamp(Microsecond, Some("UTC"))'); +---- +0 days 1 hours 0 mins 0.000000 secs + +query ? +select arrow_cast('2024-06-17T13:00:00', 'Timestamp(Nanosecond, Some("UTC"))') - arrow_cast('2024-06-17T12:00:00', 'Timestamp(Microsecond, Some("+00:00"))'); +---- +0 days 1 hours 0 mins 0.000000 secs + +# not supported: coercion across timezones +query error +select arrow_cast('2024-06-17T13:00:00', 'Timestamp(Nanosecond, Some("UTC"))') - arrow_cast('2024-06-17T12:00:00', 'Timestamp(Microsecond, Some("+01:00"))'); + +query error +select arrow_cast('2024-06-17T13:00:00', 'Timestamp(Nanosecond, Some("+00:00"))') - arrow_cast('2024-06-17T12:00:00', 'Timestamp(Microsecond, Some("+01:00"))'); diff --git a/datafusion/sqllogictest/test_files/tpch/q1.slt.part b/datafusion/sqllogictest/test_files/tpch/q1.slt.part index 5a21bdf276e3..f005081b155f 100644 --- a/datafusion/sqllogictest/test_files/tpch/q1.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q1.slt.part @@ -41,19 +41,19 @@ explain select ---- logical_plan 01)Sort: lineitem.l_returnflag ASC NULLS LAST, lineitem.l_linestatus ASC NULLS LAST -02)--Projection: lineitem.l_returnflag, lineitem.l_linestatus, sum(lineitem.l_quantity) AS sum_qty, sum(lineitem.l_extendedprice) AS sum_base_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount) AS sum_disc_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax) AS sum_charge, AVG(lineitem.l_quantity) AS avg_qty, AVG(lineitem.l_extendedprice) AS avg_price, AVG(lineitem.l_discount) AS avg_disc, COUNT(*) AS count_order -03)----Aggregate: groupBy=[[lineitem.l_returnflag, lineitem.l_linestatus]], aggr=[[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(__common_expr_1) AS sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(__common_expr_1 * (Decimal128(Some(1),20,0) + lineitem.l_tax)) AS sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), COUNT(Int64(1)) AS COUNT(*)]] +02)--Projection: lineitem.l_returnflag, lineitem.l_linestatus, sum(lineitem.l_quantity) AS sum_qty, sum(lineitem.l_extendedprice) AS sum_base_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount) AS sum_disc_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax) AS sum_charge, AVG(lineitem.l_quantity) AS avg_qty, AVG(lineitem.l_extendedprice) AS avg_price, AVG(lineitem.l_discount) AS avg_disc, count(*) AS count_order +03)----Aggregate: groupBy=[[lineitem.l_returnflag, lineitem.l_linestatus]], aggr=[[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(__common_expr_1) AS sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(__common_expr_1 * (Decimal128(Some(1),20,0) + lineitem.l_tax)) AS sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), count(Int64(1)) AS count(*)]] 04)------Projection: lineitem.l_extendedprice * (Decimal128(Some(1),20,0) - lineitem.l_discount) AS __common_expr_1, lineitem.l_quantity, lineitem.l_extendedprice, lineitem.l_discount, lineitem.l_tax, lineitem.l_returnflag, lineitem.l_linestatus 05)--------Filter: lineitem.l_shipdate <= Date32("1998-09-02") 06)----------TableScan: lineitem projection=[l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate], partial_filters=[lineitem.l_shipdate <= Date32("1998-09-02")] physical_plan 01)SortPreservingMergeExec: [l_returnflag@0 ASC NULLS LAST,l_linestatus@1 ASC NULLS LAST] 02)--SortExec: expr=[l_returnflag@0 ASC NULLS LAST,l_linestatus@1 ASC NULLS LAST], preserve_partitioning=[true] -03)----ProjectionExec: expr=[l_returnflag@0 as l_returnflag, l_linestatus@1 as l_linestatus, sum(lineitem.l_quantity)@2 as sum_qty, sum(lineitem.l_extendedprice)@3 as sum_base_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount)@4 as sum_disc_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax)@5 as sum_charge, AVG(lineitem.l_quantity)@6 as avg_qty, AVG(lineitem.l_extendedprice)@7 as avg_price, AVG(lineitem.l_discount)@8 as avg_disc, COUNT(*)@9 as count_order] -04)------AggregateExec: mode=FinalPartitioned, gby=[l_returnflag@0 as l_returnflag, l_linestatus@1 as l_linestatus], aggr=[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), COUNT(*)] +03)----ProjectionExec: expr=[l_returnflag@0 as l_returnflag, l_linestatus@1 as l_linestatus, sum(lineitem.l_quantity)@2 as sum_qty, sum(lineitem.l_extendedprice)@3 as sum_base_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount)@4 as sum_disc_price, sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax)@5 as sum_charge, AVG(lineitem.l_quantity)@6 as avg_qty, AVG(lineitem.l_extendedprice)@7 as avg_price, AVG(lineitem.l_discount)@8 as avg_disc, count(*)@9 as count_order] +04)------AggregateExec: mode=FinalPartitioned, gby=[l_returnflag@0 as l_returnflag, l_linestatus@1 as l_linestatus], aggr=[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), count(*)] 05)--------CoalesceBatchesExec: target_batch_size=8192 06)----------RepartitionExec: partitioning=Hash([l_returnflag@0, l_linestatus@1], 4), input_partitions=4 -07)------------AggregateExec: mode=Partial, gby=[l_returnflag@5 as l_returnflag, l_linestatus@6 as l_linestatus], aggr=[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), COUNT(*)] +07)------------AggregateExec: mode=Partial, gby=[l_returnflag@5 as l_returnflag, l_linestatus@6 as l_linestatus], aggr=[sum(lineitem.l_quantity), sum(lineitem.l_extendedprice), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount), sum(lineitem.l_extendedprice * Int64(1) - lineitem.l_discount * Int64(1) + lineitem.l_tax), AVG(lineitem.l_quantity), AVG(lineitem.l_extendedprice), AVG(lineitem.l_discount), count(*)] 08)--------------ProjectionExec: expr=[l_extendedprice@1 * (Some(1),20,0 - l_discount@2) as __common_expr_1, l_quantity@0 as l_quantity, l_extendedprice@1 as l_extendedprice, l_discount@2 as l_discount, l_tax@3 as l_tax, l_returnflag@4 as l_returnflag, l_linestatus@5 as l_linestatus] 09)----------------CoalesceBatchesExec: target_batch_size=8192 10)------------------FilterExec: l_shipdate@6 <= 1998-09-02 diff --git a/datafusion/sqllogictest/test_files/tpch/q13.slt.part b/datafusion/sqllogictest/test_files/tpch/q13.slt.part index f19db720fb2c..f25f23de8817 100644 --- a/datafusion/sqllogictest/test_files/tpch/q13.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q13.slt.part @@ -42,11 +42,11 @@ limit 10; logical_plan 01)Limit: skip=0, fetch=10 02)--Sort: custdist DESC NULLS FIRST, c_orders.c_count DESC NULLS FIRST, fetch=10 -03)----Projection: c_orders.c_count, COUNT(*) AS custdist -04)------Aggregate: groupBy=[[c_orders.c_count]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +03)----Projection: c_orders.c_count, count(*) AS custdist +04)------Aggregate: groupBy=[[c_orders.c_count]], aggr=[[count(Int64(1)) AS count(*)]] 05)--------SubqueryAlias: c_orders -06)----------Projection: COUNT(orders.o_orderkey) AS c_count -07)------------Aggregate: groupBy=[[customer.c_custkey]], aggr=[[COUNT(orders.o_orderkey)]] +06)----------Projection: count(orders.o_orderkey) AS c_count +07)------------Aggregate: groupBy=[[customer.c_custkey]], aggr=[[count(orders.o_orderkey)]] 08)--------------Projection: customer.c_custkey, orders.o_orderkey 09)----------------Left Join: customer.c_custkey = orders.o_custkey 10)------------------TableScan: customer projection=[c_custkey] @@ -57,13 +57,13 @@ physical_plan 01)GlobalLimitExec: skip=0, fetch=10 02)--SortPreservingMergeExec: [custdist@1 DESC,c_count@0 DESC], fetch=10 03)----SortExec: TopK(fetch=10), expr=[custdist@1 DESC,c_count@0 DESC], preserve_partitioning=[true] -04)------ProjectionExec: expr=[c_count@0 as c_count, COUNT(*)@1 as custdist] -05)--------AggregateExec: mode=FinalPartitioned, gby=[c_count@0 as c_count], aggr=[COUNT(*)] +04)------ProjectionExec: expr=[c_count@0 as c_count, count(*)@1 as custdist] +05)--------AggregateExec: mode=FinalPartitioned, gby=[c_count@0 as c_count], aggr=[count(*)] 06)----------CoalesceBatchesExec: target_batch_size=8192 07)------------RepartitionExec: partitioning=Hash([c_count@0], 4), input_partitions=4 -08)--------------AggregateExec: mode=Partial, gby=[c_count@0 as c_count], aggr=[COUNT(*)] -09)----------------ProjectionExec: expr=[COUNT(orders.o_orderkey)@1 as c_count] -10)------------------AggregateExec: mode=SinglePartitioned, gby=[c_custkey@0 as c_custkey], aggr=[COUNT(orders.o_orderkey)] +08)--------------AggregateExec: mode=Partial, gby=[c_count@0 as c_count], aggr=[count(*)] +09)----------------ProjectionExec: expr=[count(orders.o_orderkey)@1 as c_count] +10)------------------AggregateExec: mode=SinglePartitioned, gby=[c_custkey@0 as c_custkey], aggr=[count(orders.o_orderkey)] 11)--------------------CoalesceBatchesExec: target_batch_size=8192 12)----------------------HashJoinExec: mode=Partitioned, join_type=Left, on=[(c_custkey@0, o_custkey@1)], projection=[c_custkey@0, o_orderkey@1] 13)------------------------CoalesceBatchesExec: target_batch_size=8192 diff --git a/datafusion/sqllogictest/test_files/tpch/q16.slt.part b/datafusion/sqllogictest/test_files/tpch/q16.slt.part index 2b01980f0e6f..d568b2ca69e6 100644 --- a/datafusion/sqllogictest/test_files/tpch/q16.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q16.slt.part @@ -52,8 +52,8 @@ limit 10; logical_plan 01)Limit: skip=0, fetch=10 02)--Sort: supplier_cnt DESC NULLS FIRST, part.p_brand ASC NULLS LAST, part.p_type ASC NULLS LAST, part.p_size ASC NULLS LAST, fetch=10 -03)----Projection: part.p_brand, part.p_type, part.p_size, COUNT(alias1) AS supplier_cnt -04)------Aggregate: groupBy=[[part.p_brand, part.p_type, part.p_size]], aggr=[[COUNT(alias1)]] +03)----Projection: part.p_brand, part.p_type, part.p_size, count(alias1) AS supplier_cnt +04)------Aggregate: groupBy=[[part.p_brand, part.p_type, part.p_size]], aggr=[[count(alias1)]] 05)--------Aggregate: groupBy=[[part.p_brand, part.p_type, part.p_size, partsupp.ps_suppkey AS alias1]], aggr=[[]] 06)----------LeftAnti Join: partsupp.ps_suppkey = __correlated_sq_1.s_suppkey 07)------------Projection: partsupp.ps_suppkey, part.p_brand, part.p_type, part.p_size @@ -69,11 +69,11 @@ physical_plan 01)GlobalLimitExec: skip=0, fetch=10 02)--SortPreservingMergeExec: [supplier_cnt@3 DESC,p_brand@0 ASC NULLS LAST,p_type@1 ASC NULLS LAST,p_size@2 ASC NULLS LAST], fetch=10 03)----SortExec: TopK(fetch=10), expr=[supplier_cnt@3 DESC,p_brand@0 ASC NULLS LAST,p_type@1 ASC NULLS LAST,p_size@2 ASC NULLS LAST], preserve_partitioning=[true] -04)------ProjectionExec: expr=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size, COUNT(alias1)@3 as supplier_cnt] -05)--------AggregateExec: mode=FinalPartitioned, gby=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size], aggr=[COUNT(alias1)] +04)------ProjectionExec: expr=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size, count(alias1)@3 as supplier_cnt] +05)--------AggregateExec: mode=FinalPartitioned, gby=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size], aggr=[count(alias1)] 06)----------CoalesceBatchesExec: target_batch_size=8192 07)------------RepartitionExec: partitioning=Hash([p_brand@0, p_type@1, p_size@2], 4), input_partitions=4 -08)--------------AggregateExec: mode=Partial, gby=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size], aggr=[COUNT(alias1)] +08)--------------AggregateExec: mode=Partial, gby=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size], aggr=[count(alias1)] 09)----------------AggregateExec: mode=FinalPartitioned, gby=[p_brand@0 as p_brand, p_type@1 as p_type, p_size@2 as p_size, alias1@3 as alias1], aggr=[] 10)------------------CoalesceBatchesExec: target_batch_size=8192 11)--------------------RepartitionExec: partitioning=Hash([p_brand@0, p_type@1, p_size@2, alias1@3], 4), input_partitions=4 diff --git a/datafusion/sqllogictest/test_files/tpch/q21.slt.part b/datafusion/sqllogictest/test_files/tpch/q21.slt.part index b536dd281eca..74c1c2fa77d7 100644 --- a/datafusion/sqllogictest/test_files/tpch/q21.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q21.slt.part @@ -59,8 +59,8 @@ order by ---- logical_plan 01)Sort: numwait DESC NULLS FIRST, supplier.s_name ASC NULLS LAST -02)--Projection: supplier.s_name, COUNT(*) AS numwait -03)----Aggregate: groupBy=[[supplier.s_name]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +02)--Projection: supplier.s_name, count(*) AS numwait +03)----Aggregate: groupBy=[[supplier.s_name]], aggr=[[count(Int64(1)) AS count(*)]] 04)------Projection: supplier.s_name 05)--------LeftAnti Join: l1.l_orderkey = __correlated_sq_2.l_orderkey Filter: __correlated_sq_2.l_suppkey != l1.l_suppkey 06)----------LeftSemi Join: l1.l_orderkey = __correlated_sq_1.l_orderkey Filter: __correlated_sq_1.l_suppkey != l1.l_suppkey @@ -92,11 +92,11 @@ logical_plan physical_plan 01)SortPreservingMergeExec: [numwait@1 DESC,s_name@0 ASC NULLS LAST] 02)--SortExec: expr=[numwait@1 DESC,s_name@0 ASC NULLS LAST], preserve_partitioning=[true] -03)----ProjectionExec: expr=[s_name@0 as s_name, COUNT(*)@1 as numwait] -04)------AggregateExec: mode=FinalPartitioned, gby=[s_name@0 as s_name], aggr=[COUNT(*)] +03)----ProjectionExec: expr=[s_name@0 as s_name, count(*)@1 as numwait] +04)------AggregateExec: mode=FinalPartitioned, gby=[s_name@0 as s_name], aggr=[count(*)] 05)--------CoalesceBatchesExec: target_batch_size=8192 06)----------RepartitionExec: partitioning=Hash([s_name@0], 4), input_partitions=4 -07)------------AggregateExec: mode=Partial, gby=[s_name@0 as s_name], aggr=[COUNT(*)] +07)------------AggregateExec: mode=Partial, gby=[s_name@0 as s_name], aggr=[count(*)] 08)--------------CoalesceBatchesExec: target_batch_size=8192 09)----------------HashJoinExec: mode=Partitioned, join_type=LeftAnti, on=[(l_orderkey@1, l_orderkey@0)], filter=l_suppkey@1 != l_suppkey@0, projection=[s_name@0] 10)------------------CoalesceBatchesExec: target_batch_size=8192 diff --git a/datafusion/sqllogictest/test_files/tpch/q22.slt.part b/datafusion/sqllogictest/test_files/tpch/q22.slt.part index d05666b2513c..5b39c2725a97 100644 --- a/datafusion/sqllogictest/test_files/tpch/q22.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q22.slt.part @@ -57,8 +57,8 @@ order by ---- logical_plan 01)Sort: custsale.cntrycode ASC NULLS LAST -02)--Projection: custsale.cntrycode, COUNT(*) AS numcust, sum(custsale.c_acctbal) AS totacctbal -03)----Aggregate: groupBy=[[custsale.cntrycode]], aggr=[[COUNT(Int64(1)) AS COUNT(*), sum(custsale.c_acctbal)]] +02)--Projection: custsale.cntrycode, count(*) AS numcust, sum(custsale.c_acctbal) AS totacctbal +03)----Aggregate: groupBy=[[custsale.cntrycode]], aggr=[[count(Int64(1)) AS count(*), sum(custsale.c_acctbal)]] 04)------SubqueryAlias: custsale 05)--------Projection: substr(customer.c_phone, Int64(1), Int64(2)) AS cntrycode, customer.c_acctbal 06)----------Inner Join: Filter: CAST(customer.c_acctbal AS Decimal128(19, 6)) > __scalar_sq_2.AVG(customer.c_acctbal) @@ -76,11 +76,11 @@ logical_plan physical_plan 01)SortPreservingMergeExec: [cntrycode@0 ASC NULLS LAST] 02)--SortExec: expr=[cntrycode@0 ASC NULLS LAST], preserve_partitioning=[true] -03)----ProjectionExec: expr=[cntrycode@0 as cntrycode, COUNT(*)@1 as numcust, sum(custsale.c_acctbal)@2 as totacctbal] -04)------AggregateExec: mode=FinalPartitioned, gby=[cntrycode@0 as cntrycode], aggr=[COUNT(*), sum(custsale.c_acctbal)] +03)----ProjectionExec: expr=[cntrycode@0 as cntrycode, count(*)@1 as numcust, sum(custsale.c_acctbal)@2 as totacctbal] +04)------AggregateExec: mode=FinalPartitioned, gby=[cntrycode@0 as cntrycode], aggr=[count(*), sum(custsale.c_acctbal)] 05)--------CoalesceBatchesExec: target_batch_size=8192 06)----------RepartitionExec: partitioning=Hash([cntrycode@0], 4), input_partitions=4 -07)------------AggregateExec: mode=Partial, gby=[cntrycode@0 as cntrycode], aggr=[COUNT(*), sum(custsale.c_acctbal)] +07)------------AggregateExec: mode=Partial, gby=[cntrycode@0 as cntrycode], aggr=[count(*), sum(custsale.c_acctbal)] 08)--------------ProjectionExec: expr=[substr(c_phone@0, 1, 2) as cntrycode, c_acctbal@1 as c_acctbal] 09)----------------RepartitionExec: partitioning=RoundRobinBatch(4), input_partitions=1 10)------------------NestedLoopJoinExec: join_type=Inner, filter=CAST(c_acctbal@0 AS Decimal128(19, 6)) > AVG(customer.c_acctbal)@1 diff --git a/datafusion/sqllogictest/test_files/tpch/q4.slt.part b/datafusion/sqllogictest/test_files/tpch/q4.slt.part index e2a5b9c5f009..b5a40e5b62d1 100644 --- a/datafusion/sqllogictest/test_files/tpch/q4.slt.part +++ b/datafusion/sqllogictest/test_files/tpch/q4.slt.part @@ -41,8 +41,8 @@ order by ---- logical_plan 01)Sort: orders.o_orderpriority ASC NULLS LAST -02)--Projection: orders.o_orderpriority, COUNT(*) AS order_count -03)----Aggregate: groupBy=[[orders.o_orderpriority]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +02)--Projection: orders.o_orderpriority, count(*) AS order_count +03)----Aggregate: groupBy=[[orders.o_orderpriority]], aggr=[[count(Int64(1)) AS count(*)]] 04)------Projection: orders.o_orderpriority 05)--------LeftSemi Join: orders.o_orderkey = __correlated_sq_1.l_orderkey 06)----------Projection: orders.o_orderkey, orders.o_orderpriority @@ -55,11 +55,11 @@ logical_plan physical_plan 01)SortPreservingMergeExec: [o_orderpriority@0 ASC NULLS LAST] 02)--SortExec: expr=[o_orderpriority@0 ASC NULLS LAST], preserve_partitioning=[true] -03)----ProjectionExec: expr=[o_orderpriority@0 as o_orderpriority, COUNT(*)@1 as order_count] -04)------AggregateExec: mode=FinalPartitioned, gby=[o_orderpriority@0 as o_orderpriority], aggr=[COUNT(*)] +03)----ProjectionExec: expr=[o_orderpriority@0 as o_orderpriority, count(*)@1 as order_count] +04)------AggregateExec: mode=FinalPartitioned, gby=[o_orderpriority@0 as o_orderpriority], aggr=[count(*)] 05)--------CoalesceBatchesExec: target_batch_size=8192 06)----------RepartitionExec: partitioning=Hash([o_orderpriority@0], 4), input_partitions=4 -07)------------AggregateExec: mode=Partial, gby=[o_orderpriority@0 as o_orderpriority], aggr=[COUNT(*)] +07)------------AggregateExec: mode=Partial, gby=[o_orderpriority@0 as o_orderpriority], aggr=[count(*)] 08)--------------CoalesceBatchesExec: target_batch_size=8192 09)----------------HashJoinExec: mode=Partitioned, join_type=LeftSemi, on=[(o_orderkey@0, l_orderkey@0)], projection=[o_orderpriority@1] 10)------------------CoalesceBatchesExec: target_batch_size=8192 diff --git a/datafusion/sqllogictest/test_files/union.slt b/datafusion/sqllogictest/test_files/union.slt index 36f024961875..7b91e97e4a3e 100644 --- a/datafusion/sqllogictest/test_files/union.slt +++ b/datafusion/sqllogictest/test_files/union.slt @@ -420,16 +420,16 @@ SELECT count(*) FROM ( ) GROUP BY name ---- logical_plan -01)Projection: COUNT(*) -02)--Aggregate: groupBy=[[t1.name]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Projection: count(*) +02)--Aggregate: groupBy=[[t1.name]], aggr=[[count(Int64(1)) AS count(*)]] 03)----Union 04)------Aggregate: groupBy=[[t1.name]], aggr=[[]] 05)--------TableScan: t1 projection=[name] 06)------Aggregate: groupBy=[[t2.name]], aggr=[[]] 07)--------TableScan: t2 projection=[name] physical_plan -01)ProjectionExec: expr=[COUNT(*)@1 as COUNT(*)] -02)--AggregateExec: mode=SinglePartitioned, gby=[name@0 as name], aggr=[COUNT(*)] +01)ProjectionExec: expr=[count(*)@1 as count(*)] +02)--AggregateExec: mode=SinglePartitioned, gby=[name@0 as name], aggr=[count(*)] 03)----InterleaveExec 04)------AggregateExec: mode=FinalPartitioned, gby=[name@0 as name], aggr=[] 05)--------CoalesceBatchesExec: target_batch_size=2 @@ -565,8 +565,8 @@ select x, y from (select 1 as x , max(10) as y) b ---- logical_plan 01)Union -02)--Projection: COUNT(*) AS count, a.n -03)----Aggregate: groupBy=[[a.n]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +02)--Projection: count(*) AS count, a.n +03)----Aggregate: groupBy=[[a.n]], aggr=[[count(Int64(1)) AS count(*)]] 04)------SubqueryAlias: a 05)--------Projection: Int64(5) AS n 06)----------EmptyRelation @@ -577,11 +577,11 @@ logical_plan 11)----------EmptyRelation physical_plan 01)UnionExec -02)--ProjectionExec: expr=[COUNT(*)@1 as count, n@0 as n] -03)----AggregateExec: mode=FinalPartitioned, gby=[n@0 as n], aggr=[COUNT(*)], ordering_mode=Sorted +02)--ProjectionExec: expr=[count(*)@1 as count, n@0 as n] +03)----AggregateExec: mode=FinalPartitioned, gby=[n@0 as n], aggr=[count(*)], ordering_mode=Sorted 04)------CoalesceBatchesExec: target_batch_size=2 05)--------RepartitionExec: partitioning=Hash([n@0], 4), input_partitions=1 -06)----------AggregateExec: mode=Partial, gby=[n@0 as n], aggr=[COUNT(*)], ordering_mode=Sorted +06)----------AggregateExec: mode=Partial, gby=[n@0 as n], aggr=[count(*)], ordering_mode=Sorted 07)------------ProjectionExec: expr=[5 as n] 08)--------------PlaceholderRowExec 09)--ProjectionExec: expr=[1 as count, MAX(Int64(10))@0 as n] diff --git a/datafusion/sqllogictest/test_files/window.slt b/datafusion/sqllogictest/test_files/window.slt index 77b839f3f77a..d63917a78e42 100644 --- a/datafusion/sqllogictest/test_files/window.slt +++ b/datafusion/sqllogictest/test_files/window.slt @@ -1303,14 +1303,14 @@ EXPLAIN SELECT FROM aggregate_test_100 ---- logical_plan -01)Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING -02)--WindowAggr: windowExpr=[[COUNT(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] +01)Projection: sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING +02)--WindowAggr: windowExpr=[[count(Int64(1)) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING AS count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 03)----Projection: aggregate_test_100.c1, aggregate_test_100.c2, sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING 04)------WindowAggr: windowExpr=[[sum(CAST(aggregate_test_100.c4 AS Int64)) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING]] 05)--------TableScan: aggregate_test_100 projection=[c1, c2, c4] physical_plan -01)ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@2 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING] -02)--BoundedWindowAggExec: wdw=[COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +01)ProjectionExec: expr=[sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@2 as sum(aggregate_test_100.c4) PARTITION BY [aggregate_test_100.c1, aggregate_test_100.c2] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING@3 as count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING] +02)--BoundedWindowAggExec: wdw=[count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) PARTITION BY [aggregate_test_100.c1] ORDER BY [aggregate_test_100.c2 ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] 03)----SortExec: expr=[c1@0 ASC NULLS LAST,c2@1 ASC NULLS LAST], preserve_partitioning=[true] 04)------CoalesceBatchesExec: target_batch_size=4096 05)--------RepartitionExec: partitioning=Hash([c1@0], 2), input_partitions=2 @@ -1763,8 +1763,8 @@ EXPLAIN SELECT count(*) as global_count FROM ORDER BY c1 ) AS a ---- logical_plan -01)Projection: COUNT(*) AS global_count -02)--Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]] +01)Projection: count(*) AS global_count +02)--Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]] 03)----SubqueryAlias: a 04)------Projection: 05)--------Sort: aggregate_test_100.c1 ASC NULLS LAST @@ -1773,10 +1773,10 @@ logical_plan 08)--------------Filter: aggregate_test_100.c13 != Utf8("C2GT5KVyOPZpgKVl110TyZO0NcJ434") 09)----------------TableScan: aggregate_test_100 projection=[c1, c13], partial_filters=[aggregate_test_100.c13 != Utf8("C2GT5KVyOPZpgKVl110TyZO0NcJ434")] physical_plan -01)ProjectionExec: expr=[COUNT(*)@0 as global_count] -02)--AggregateExec: mode=Final, gby=[], aggr=[COUNT(*)] +01)ProjectionExec: expr=[count(*)@0 as global_count] +02)--AggregateExec: mode=Final, gby=[], aggr=[count(*)] 03)----CoalescePartitionsExec -04)------AggregateExec: mode=Partial, gby=[], aggr=[COUNT(*)] +04)------AggregateExec: mode=Partial, gby=[], aggr=[count(*)] 05)--------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=2 06)----------ProjectionExec: expr=[] 07)------------AggregateExec: mode=FinalPartitioned, gby=[c1@0 as c1], aggr=[] @@ -2573,22 +2573,22 @@ logical_plan 01)Projection: sum1, sum2, sum3, min1, min2, min3, max1, max2, max3, cnt1, cnt2, sumr1, sumr2, sumr3, minr1, minr2, minr3, maxr1, maxr2, maxr3, cntr1, cntr2, sum4, cnt3 02)--Limit: skip=0, fetch=5 03)----Sort: annotated_data_finite.inc_col DESC NULLS FIRST, fetch=5 -04)------Projection: sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS sum2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS sum3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS min1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS min2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS min3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS max1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS max2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS max3, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING AS cnt1, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cnt2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING AS sumr1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING AS sumr2, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING AS sumr3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS minr1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS minr2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS minr3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS maxr1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS maxr2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS maxr3, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS cntr1, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cntr2, sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS sum4, COUNT(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cnt3, annotated_data_finite.inc_col -05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, COUNT(Int64(1)) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS COUNT(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] -06)----------Projection: __common_expr_1, annotated_data_finite.inc_col, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING -07)------------WindowAggr: windowExpr=[[sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(Int64(1)) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING AS COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, COUNT(Int64(1)) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] -08)--------------WindowAggr: windowExpr=[[sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(Int64(1)) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, COUNT(Int64(1)) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] +04)------Projection: sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS sum2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS sum3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS min1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS min2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS min3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS max1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS max2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS max3, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING AS cnt1, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cnt2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING AS sumr1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING AS sumr2, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING AS sumr3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS minr1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS minr2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS minr3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING AS maxr1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING AS maxr2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING AS maxr3, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS cntr1, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cntr2, sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS sum4, count(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS cnt3, annotated_data_finite.inc_col +05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, count(Int64(1)) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS count(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] +06)----------Projection: __common_expr_1, annotated_data_finite.inc_col, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING +07)------------WindowAggr: windowExpr=[[sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(Int64(1)) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING AS count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, count(Int64(1)) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] +08)--------------WindowAggr: windowExpr=[[sum(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(__common_expr_1 AS annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(Int64(1)) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING AS count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, count(Int64(1)) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING AS count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING]] 09)----------------Projection: CAST(annotated_data_finite.desc_col AS Int64) AS __common_expr_1, CAST(annotated_data_finite.inc_col AS Int64) AS __common_expr_2, annotated_data_finite.ts, annotated_data_finite.inc_col, annotated_data_finite.desc_col 10)------------------TableScan: annotated_data_finite projection=[ts, inc_col, desc_col] physical_plan 01)ProjectionExec: expr=[sum1@0 as sum1, sum2@1 as sum2, sum3@2 as sum3, min1@3 as min1, min2@4 as min2, min3@5 as min3, max1@6 as max1, max2@7 as max2, max3@8 as max3, cnt1@9 as cnt1, cnt2@10 as cnt2, sumr1@11 as sumr1, sumr2@12 as sumr2, sumr3@13 as sumr3, minr1@14 as minr1, minr2@15 as minr2, minr3@16 as minr3, maxr1@17 as maxr1, maxr2@18 as maxr2, maxr3@19 as maxr3, cntr1@20 as cntr1, cntr2@21 as cntr2, sum4@22 as sum4, cnt3@23 as cnt3] 02)--GlobalLimitExec: skip=0, fetch=5 03)----SortExec: TopK(fetch=5), expr=[inc_col@24 DESC], preserve_partitioning=[false] -04)------ProjectionExec: expr=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@13 as sum1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@14 as sum2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@15 as sum3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@16 as min1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@17 as min2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@18 as min3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@19 as max1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@20 as max2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@21 as max3, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING@22 as cnt1, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@23 as cnt2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING@2 as sumr1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING@3 as sumr2, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING@4 as sumr3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@5 as minr1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@6 as minr2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@7 as minr3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@8 as maxr1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@9 as maxr2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@10 as maxr3, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING@11 as cntr1, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@12 as cntr2, sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@24 as sum4, COUNT(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@25 as cnt3, inc_col@1 as inc_col] -05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] -06)----------ProjectionExec: expr=[__common_expr_1@0 as __common_expr_1, inc_col@3 as inc_col, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING@5 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING@6 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING@7 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@8 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@9 as MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@10 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@11 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@12 as MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@13 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING@14 as COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@15 as COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@16 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@17 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@18 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@19 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@20 as MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@21 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@22 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@23 as MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@24 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING@25 as COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@26 as COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING] -07)------------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING: Ok(Field { name: "COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(4)), end_bound: Following(Int32(8)), is_causal: false }, COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] -08)--------------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(4)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(8)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(5)), end_bound: Following(UInt64(1)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(10)), is_causal: false }, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(5)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(10)), end_bound: Following(UInt64(1)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(10)), is_causal: false }, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(5)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(10)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING: Ok(Field { name: "COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(2)), end_bound: Following(Int32(6)), is_causal: false }, COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(8)), is_causal: false }], mode=[Sorted] +04)------ProjectionExec: expr=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@13 as sum1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@14 as sum2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@15 as sum3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@16 as min1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@17 as min2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@18 as min3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@19 as max1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@20 as max2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@21 as max3, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING@22 as cnt1, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@23 as cnt2, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING@2 as sumr1, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING@3 as sumr2, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING@4 as sumr3, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@5 as minr1, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@6 as minr2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@7 as minr3, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@8 as maxr1, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@9 as maxr2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@10 as maxr3, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING@11 as cntr1, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@12 as cntr2, sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@24 as sum4, count(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@25 as cnt3, inc_col@1 as inc_col] +05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +06)----------ProjectionExec: expr=[__common_expr_1@0 as __common_expr_1, inc_col@3 as inc_col, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING@5 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING@6 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING@7 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@8 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@9 as MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@10 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@11 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@12 as MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@13 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING@14 as count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@15 as count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@16 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@17 as sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@18 as sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@19 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@20 as MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@21 as MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING@22 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING@23 as MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING@24 as MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING@25 as count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING@26 as count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING] +07)------------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(10)), end_bound: Following(Int32(1)), is_causal: false }, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(5)), end_bound: Following(Int32(1)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(10)), is_causal: false }, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING: Ok(Field { name: "count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN 4 PRECEDING AND 8 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(4)), end_bound: Following(Int32(8)), is_causal: false }, count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(8)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +08)--------------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 4 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(4)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 1 PRECEDING AND 8 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(8)), end_bound: Following(Int32(1)), is_causal: false }, sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(5)), end_bound: Following(UInt64(1)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(10)), is_causal: false }, MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(5)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(10)), end_bound: Following(UInt64(1)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 10 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(10)), is_causal: false }, MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.desc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 5 PRECEDING AND 1 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(1)), end_bound: Following(Int32(5)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 1 PRECEDING AND 10 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(10)), end_bound: Following(UInt64(1)), is_causal: false }, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING: Ok(Field { name: "count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 6 PRECEDING AND 2 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(2)), end_bound: Following(Int32(6)), is_causal: false }, count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(*) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] ROWS BETWEEN 8 PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(1)), end_bound: Following(UInt64(8)), is_causal: false }], mode=[Sorted] 09)----------------ProjectionExec: expr=[CAST(desc_col@2 AS Int64) as __common_expr_1, CAST(inc_col@1 AS Int64) as __common_expr_2, ts@0 as ts, inc_col@1 as inc_col, desc_col@2 as desc_col] 10)------------------CsvExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/window_1.csv]]}, projection=[ts, inc_col, desc_col], output_ordering=[ts@0 ASC NULLS LAST], has_header=true @@ -2737,18 +2737,18 @@ logical_plan 01)Projection: sum1, sum2, min1, min2, max1, max2, count1, count2, avg1, avg2 02)--Limit: skip=0, fetch=5 03)----Sort: annotated_data_finite.inc_col ASC NULLS LAST, fetch=5 -04)------Projection: sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS sum1, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS min1, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS min2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS max1, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS max2, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS count1, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS avg1, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS avg2, annotated_data_finite.inc_col -05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, AVG(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING]] -06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, AVG(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] +04)------Projection: sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS sum1, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS min1, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS min2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS max1, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS max2, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS count1, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING AS avg1, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS avg2, annotated_data_finite.inc_col +05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING, AVG(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING]] +06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, AVG(__common_expr_2 AS annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] 07)------------Projection: CAST(annotated_data_finite.inc_col AS Int64) AS __common_expr_1, CAST(annotated_data_finite.inc_col AS Float64) AS __common_expr_2, annotated_data_finite.ts, annotated_data_finite.inc_col 08)--------------TableScan: annotated_data_finite projection=[ts, inc_col] physical_plan 01)ProjectionExec: expr=[sum1@0 as sum1, sum2@1 as sum2, min1@2 as min1, min2@3 as min2, max1@4 as max1, max2@5 as max2, count1@6 as count1, count2@7 as count2, avg1@8 as avg1, avg2@9 as avg2] 02)--GlobalLimitExec: skip=0, fetch=5 03)----SortExec: TopK(fetch=5), expr=[inc_col@10 ASC NULLS LAST], preserve_partitioning=[false] -04)------ProjectionExec: expr=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@9 as sum1, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as sum2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@10 as min1, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@5 as min2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@11 as max1, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@6 as max2, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@12 as count1, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@7 as count2, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@13 as avg1, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@8 as avg2, inc_col@3 as inc_col] -05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }], mode=[Sorted] -06)----------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "COUNT(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }], mode=[Sorted] +04)------ProjectionExec: expr=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@9 as sum1, sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as sum2, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@10 as min1, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@5 as min2, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@11 as max1, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@6 as max2, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@12 as count1, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@7 as count2, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING@13 as avg1, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@8 as avg2, inc_col@3 as inc_col] +05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING: Ok(Field { name: "AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND 5 FOLLOWING", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(5)), is_causal: false }], mode=[Sorted] +06)----------BoundedWindowAggExec: wdw=[sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "MIN(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "MAX(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int32, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "count(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }, AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "AVG(annotated_data_finite.inc_col) ORDER BY [annotated_data_finite.ts DESC NULLS FIRST] RANGE BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Float64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int32(NULL)), end_bound: Following(Int32(3)), is_causal: false }], mode=[Sorted] 07)------------ProjectionExec: expr=[CAST(inc_col@1 AS Int64) as __common_expr_1, CAST(inc_col@1 AS Float64) as __common_expr_2, ts@0 as ts, inc_col@1 as inc_col] 08)--------------CsvExec: file_groups={1 group: [[WORKSPACE_ROOT/datafusion/core/tests/data/window_1.csv]]}, projection=[ts, inc_col], output_ordering=[ts@0 ASC NULLS LAST], has_header=true @@ -2838,17 +2838,17 @@ logical_plan 01)Projection: sum1, sum2, count1, count2 02)--Limit: skip=0, fetch=5 03)----Sort: annotated_data_infinite.ts ASC NULLS LAST, fetch=5 -04)------Projection: sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS count1, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, annotated_data_infinite.ts -05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING]] -06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] +04)------Projection: sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS count1, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, annotated_data_infinite.ts +05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING]] +06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] 07)------------Projection: CAST(annotated_data_infinite.inc_col AS Int64) AS __common_expr_1, annotated_data_infinite.ts, annotated_data_infinite.inc_col 08)--------------TableScan: annotated_data_infinite projection=[ts, inc_col] physical_plan 01)ProjectionExec: expr=[sum1@0 as sum1, sum2@1 as sum2, count1@2 as count1, count2@3 as count2] 02)--GlobalLimitExec: skip=0, fetch=5 -03)----ProjectionExec: expr=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@5 as sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@3 as sum2, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@6 as count1, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as count2, ts@1 as ts] -04)------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] -05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }], mode=[Sorted] +03)----ProjectionExec: expr=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@5 as sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@3 as sum2, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@6 as count1, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as count2, ts@1 as ts] +04)------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }], mode=[Sorted] 06)----------ProjectionExec: expr=[CAST(inc_col@1 AS Int64) as __common_expr_1, ts@0 as ts, inc_col@1 as inc_col] 07)------------StreamingTableExec: partition_sizes=1, projection=[ts, inc_col], infinite_source=true, output_ordering=[ts@0 ASC NULLS LAST] @@ -2885,17 +2885,17 @@ logical_plan 01)Projection: sum1, sum2, count1, count2 02)--Limit: skip=0, fetch=5 03)----Sort: annotated_data_infinite.ts ASC NULLS LAST, fetch=5 -04)------Projection: sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS count1, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, annotated_data_infinite.ts -05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING]] -06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] +04)------Projection: sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS sum2, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING AS count1, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING AS count2, annotated_data_infinite.ts +05)--------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING]] +06)----------WindowAggr: windowExpr=[[sum(__common_expr_1 AS annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING]] 07)------------Projection: CAST(annotated_data_infinite.inc_col AS Int64) AS __common_expr_1, annotated_data_infinite.ts, annotated_data_infinite.inc_col 08)--------------TableScan: annotated_data_infinite projection=[ts, inc_col] physical_plan 01)ProjectionExec: expr=[sum1@0 as sum1, sum2@1 as sum2, count1@2 as count1, count2@3 as count2] 02)--GlobalLimitExec: skip=0, fetch=5 -03)----ProjectionExec: expr=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@5 as sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@3 as sum2, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@6 as count1, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as count2, ts@1 as ts] -04)------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] -05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }, COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "COUNT(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }], mode=[Sorted] +03)----ProjectionExec: expr=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@5 as sum1, sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@3 as sum2, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING@6 as count1, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING@4 as count2, ts@1 as ts] +04)------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING: Ok(Field { name: "count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts ASC NULLS LAST] ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(1)), is_causal: false }], mode=[Sorted] +05)--------BoundedWindowAggExec: wdw=[sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "sum(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }, count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING: Ok(Field { name: "count(annotated_data_infinite.inc_col) ORDER BY [annotated_data_infinite.ts DESC NULLS FIRST] ROWS BETWEEN 3 PRECEDING AND UNBOUNDED FOLLOWING", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Rows, start_bound: Preceding(UInt64(NULL)), end_bound: Following(UInt64(3)), is_causal: false }], mode=[Sorted] 06)----------ProjectionExec: expr=[CAST(inc_col@1 AS Int64) as __common_expr_1, ts@0 as ts, inc_col@1 as inc_col] 07)------------StreamingTableExec: partition_sizes=1, projection=[ts, inc_col], infinite_source=true, output_ordering=[ts@0 ASC NULLS LAST] @@ -4134,13 +4134,13 @@ query TT EXPLAIN select count(*) over (partition by a order by a) from (select * from a where a = 1); ---- logical_plan -01)Projection: COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW -02)--WindowAggr: windowExpr=[[COUNT(Int64(1)) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW AS COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW]] +01)Projection: count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW +02)--WindowAggr: windowExpr=[[count(Int64(1)) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW AS count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW]] 03)----Filter: a.a = Int64(1) 04)------TableScan: a projection=[a] physical_plan -01)ProjectionExec: expr=[COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@1 as COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW] -02)--BoundedWindowAggExec: wdw=[COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "COUNT(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int64(NULL)), end_bound: CurrentRow, is_causal: false }], mode=[Sorted] +01)ProjectionExec: expr=[count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW@1 as count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW] +02)--BoundedWindowAggExec: wdw=[count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW: Ok(Field { name: "count(*) PARTITION BY [a.a] ORDER BY [a.a ASC NULLS LAST] RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW", data_type: Int64, nullable: true, dict_id: 0, dict_is_ordered: false, metadata: {} }), frame: WindowFrame { units: Range, start_bound: Preceding(Int64(NULL)), end_bound: CurrentRow, is_causal: false }], mode=[Sorted] 03)----CoalesceBatchesExec: target_batch_size=4096 04)------RepartitionExec: partitioning=Hash([a@0], 2), input_partitions=2 05)--------RepartitionExec: partitioning=RoundRobinBatch(2), input_partitions=1 diff --git a/datafusion/substrait/src/logical_plan/consumer.rs b/datafusion/substrait/src/logical_plan/consumer.rs index 93f197885c0a..a48da7b9a1a8 100644 --- a/datafusion/substrait/src/logical_plan/consumer.rs +++ b/datafusion/substrait/src/logical_plan/consumer.rs @@ -983,7 +983,7 @@ pub async fn from_substrait_agg_func( // try udaf first, then built-in aggr fn. if let Ok(fun) = ctx.udaf(function_name) { // deal with situation that count(*) got no arguments - if fun.name() == "COUNT" && args.is_empty() { + if fun.name() == "count" && args.is_empty() { args.push(Expr::Literal(ScalarValue::Int64(Some(1)))); } diff --git a/datafusion/substrait/tests/cases/consumer_integration.rs b/datafusion/substrait/tests/cases/consumer_integration.rs index e0151ecc3a4f..975cc150d79c 100644 --- a/datafusion/substrait/tests/cases/consumer_integration.rs +++ b/datafusion/substrait/tests/cases/consumer_integration.rs @@ -46,9 +46,9 @@ mod tests { let plan_str = format!("{:?}", plan); assert_eq!( plan_str, - "Projection: FILENAME_PLACEHOLDER_0.l_returnflag AS L_RETURNFLAG, FILENAME_PLACEHOLDER_0.l_linestatus AS L_LINESTATUS, sum(FILENAME_PLACEHOLDER_0.l_quantity) AS SUM_QTY, sum(FILENAME_PLACEHOLDER_0.l_extendedprice) AS SUM_BASE_PRICE, sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount) AS SUM_DISC_PRICE, sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount * Int32(1) + FILENAME_PLACEHOLDER_0.l_tax) AS SUM_CHARGE, AVG(FILENAME_PLACEHOLDER_0.l_quantity) AS AVG_QTY, AVG(FILENAME_PLACEHOLDER_0.l_extendedprice) AS AVG_PRICE, AVG(FILENAME_PLACEHOLDER_0.l_discount) AS AVG_DISC, COUNT(Int64(1)) AS COUNT_ORDER\ + "Projection: FILENAME_PLACEHOLDER_0.l_returnflag AS L_RETURNFLAG, FILENAME_PLACEHOLDER_0.l_linestatus AS L_LINESTATUS, sum(FILENAME_PLACEHOLDER_0.l_quantity) AS SUM_QTY, sum(FILENAME_PLACEHOLDER_0.l_extendedprice) AS SUM_BASE_PRICE, sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount) AS SUM_DISC_PRICE, sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount * Int32(1) + FILENAME_PLACEHOLDER_0.l_tax) AS SUM_CHARGE, AVG(FILENAME_PLACEHOLDER_0.l_quantity) AS AVG_QTY, AVG(FILENAME_PLACEHOLDER_0.l_extendedprice) AS AVG_PRICE, AVG(FILENAME_PLACEHOLDER_0.l_discount) AS AVG_DISC, count(Int64(1)) AS COUNT_ORDER\ \n Sort: FILENAME_PLACEHOLDER_0.l_returnflag ASC NULLS LAST, FILENAME_PLACEHOLDER_0.l_linestatus ASC NULLS LAST\ - \n Aggregate: groupBy=[[FILENAME_PLACEHOLDER_0.l_returnflag, FILENAME_PLACEHOLDER_0.l_linestatus]], aggr=[[sum(FILENAME_PLACEHOLDER_0.l_quantity), sum(FILENAME_PLACEHOLDER_0.l_extendedprice), sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount), sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount * Int32(1) + FILENAME_PLACEHOLDER_0.l_tax), AVG(FILENAME_PLACEHOLDER_0.l_quantity), AVG(FILENAME_PLACEHOLDER_0.l_extendedprice), AVG(FILENAME_PLACEHOLDER_0.l_discount), COUNT(Int64(1))]]\ + \n Aggregate: groupBy=[[FILENAME_PLACEHOLDER_0.l_returnflag, FILENAME_PLACEHOLDER_0.l_linestatus]], aggr=[[sum(FILENAME_PLACEHOLDER_0.l_quantity), sum(FILENAME_PLACEHOLDER_0.l_extendedprice), sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount), sum(FILENAME_PLACEHOLDER_0.l_extendedprice * Int32(1) - FILENAME_PLACEHOLDER_0.l_discount * Int32(1) + FILENAME_PLACEHOLDER_0.l_tax), AVG(FILENAME_PLACEHOLDER_0.l_quantity), AVG(FILENAME_PLACEHOLDER_0.l_extendedprice), AVG(FILENAME_PLACEHOLDER_0.l_discount), count(Int64(1))]]\ \n Projection: FILENAME_PLACEHOLDER_0.l_returnflag, FILENAME_PLACEHOLDER_0.l_linestatus, FILENAME_PLACEHOLDER_0.l_quantity, FILENAME_PLACEHOLDER_0.l_extendedprice, FILENAME_PLACEHOLDER_0.l_extendedprice * (CAST(Int32(1) AS Decimal128(19, 0)) - FILENAME_PLACEHOLDER_0.l_discount), FILENAME_PLACEHOLDER_0.l_extendedprice * (CAST(Int32(1) AS Decimal128(19, 0)) - FILENAME_PLACEHOLDER_0.l_discount) * (CAST(Int32(1) AS Decimal128(19, 0)) + FILENAME_PLACEHOLDER_0.l_tax), FILENAME_PLACEHOLDER_0.l_discount\ \n Filter: FILENAME_PLACEHOLDER_0.l_shipdate <= Date32(\"1998-12-01\") - IntervalDayTime(\"IntervalDayTime { days: 120, milliseconds: 0 }\")\ \n TableScan: FILENAME_PLACEHOLDER_0 projection=[l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus, l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_shipmode, l_comment]" diff --git a/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs b/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs index 4e4fa45a15a6..d236d34c9df9 100644 --- a/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs +++ b/datafusion/substrait/tests/cases/roundtrip_logical_plan.rs @@ -594,10 +594,10 @@ async fn roundtrip_union_all() -> Result<()> { #[tokio::test] async fn simple_intersect() -> Result<()> { - // Substrait treats both COUNT(*) and COUNT(1) the same + // Substrait treats both count(*) and count(1) the same assert_expected_plan( - "SELECT COUNT(*) FROM (SELECT data.a FROM data INTERSECT SELECT data2.a FROM data2);", - "Aggregate: groupBy=[[]], aggr=[[COUNT(Int64(1)) AS COUNT(*)]]\ + "SELECT count(*) FROM (SELECT data.a FROM data INTERSECT SELECT data2.a FROM data2);", + "Aggregate: groupBy=[[]], aggr=[[count(Int64(1)) AS count(*)]]\ \n Projection: \ \n LeftSemi Join: data.a = data2.a\ \n Aggregate: groupBy=[[data.a]], aggr=[[]]\ @@ -610,7 +610,7 @@ async fn simple_intersect() -> Result<()> { #[tokio::test] async fn simple_intersect_table_reuse() -> Result<()> { - roundtrip("SELECT COUNT(1) FROM (SELECT data.a FROM data INTERSECT SELECT data.a FROM data);").await + roundtrip("SELECT count(1) FROM (SELECT data.a FROM data INTERSECT SELECT data.a FROM data);").await } #[tokio::test] diff --git a/docs/source/user-guide/dataframe.md b/docs/source/user-guide/dataframe.md index c0210200a246..f011e68fadb2 100644 --- a/docs/source/user-guide/dataframe.md +++ b/docs/source/user-guide/dataframe.md @@ -64,6 +64,8 @@ execution. The plan is evaluated (executed) when an action method is invoked, su | ------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | | aggregate | Perform an aggregate query with optional grouping expressions. | | distinct | Filter out duplicate rows. | +| distinct_on | Filter out duplicate rows based on provided expressions. | +| drop_columns | Create a projection with all but the provided column names. | | except | Calculate the exception of two DataFrames. The two DataFrames must have exactly the same schema | | filter | Filter a DataFrame to only include rows that match the specified filter expression. | | intersect | Calculate the intersection of two DataFrames. The two DataFrames must have exactly the same schema |