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Figure 1: When building with DataFusion, system designers implement domain-specific features via extension APIs (blue),
rather than re-implementing standard OLAP query engine technology (green).

ABSTRACT
Apache Arrow DataFusion[25] is a fast, embeddable, and extensible
query engine written in Rust[76] that uses Apache Arrow[24] as its
memorymodel. In this paper we describe the technologies on which
it is built, and how it fits in long-term database implementation
trends. We then enumerate its features, optimizations, architecture
and extension APIs to illustrate the breadth of requirements of mod-
ern OLAP engines as well as the interfaces needed by systems built
with them. Finally, we demonstrate open standards and extensible
design do not preclude state-of-the-art performance using a series
of experimental comparisons to DuckDB[66].

While the individual techniques used in DataFusion have been
previously described many times, it differs from other industrial
strength engines by providing competitive performance and an
open architecture that can be customized using more than 10 major
extension APIs. This flexibility has led to use in many commercial
and open source databases, machine learning pipelines, and other
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data-intensive systems. We anticipate that the accessibility and
versatility of DataFusion, along with its competitive performance,
will further the proliferation of high-performance custom data
infrastructures tailored to specific needs assembled from modular
components[18, 61].
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1 INTRODUCTION
Traditionally, the realm of high-performance analytic query en-
gines has been dominated by tightly integrated systems such as
Vertica [47], Spark [77], and DuckDB [66]. This approach optimizes
the interfaces between the file format, in-memory layout, and pro-
cessing engine to achieve peak performance. However, building
such a system is expensive and requires substantial commercial
and/or research funding, given the extensive software engineering
required.

As new requirements such as elastically scaling compute in pub-
lic clouds and supplyingAI/Machine Learning pipelines require new
data systems, it has become clear that continually reimplementing
such query engines is unnecessary. Due the number analytic sys-
tems that have been built in industry and studied in academia, we
know the best boundaries between subsystems such as file format,
catalog, language front-ends and execution engine [18, 61].

DataFusion is designed with these API boundaries in mind, per-
mitting assembly of end-to-end systems from open, reusable and
high-quality components, using standards such as Apache Arrow
(Section 2.1) and Apache Parquet (Section 2.2). Its competitive per-
formance while being extensible demonstrates that a modern OLAP
engine does not need to have a tight-knit architecture. Its mere
existence demonstrates that permissive licensing and an open or-
ganizational structure [27] are capable of creating and maintaining
this level of technology.

This paper makes the following contributions:
(1) Describes the ecosystem of technologies that power Data-

Fusion and that will likely power the majority of successful
analytic systems in the next decade.

(2) Describes several systems built with DataFusion, illustrating
the possibilities of commodity OLAP engines.

(3) Describes DataFusion’s architecture, feature set, and opti-
mizations, illustrating the breadth of features required of
modern analytic engines and quantifying the effort neces-
sary to implement one.

(4) Defines DataFusion’s extension APIs, outlining key module
boundaries in an analytic stack.

(5) Evaluates DataFusion’s performance, demonstrating that
state-of-the-art performance is achievable using modular
components and open standards.

The rest of this paper is organized as follows: Section 2 re-
views the technologies on which DataFusion is built. Section 3
describes use cases and examples of real-world adoption. Section 4
explores the trend towards modular databases. Section 5 describes
DataFusion’s architecture, detailing its execution model and key
components. Section 6 enumerates many of the standard query
optimizations included in DataFusion. Section 7 describes the APIs
for extending DataFusion. Section 8 evaluates DataFusion’s per-
formance. We describe related work in Section 9 and conclude in
Section 10.

2 FOUNDATIONAL ECOSYSTEM
DataFusion is only possible due to the advent of several lower-level
technologies: Apache Arrow’s in-memory columnar structure and
compute kernels, Parquet’s efficient columnar storage, and the Rust
ecosystem that enables a high-performance, yet comprehensible

implementation. Without these technologies, it is unlikely we could
have built DataFusion with the relatively modest resources avail-
able. Additionally, using these technologies, systems built with
DataFusion easily integrate with the broader ecosystem, directly
sharing files and in-memory data streams without time-consuming
and error-prone format transformations.

2.1 Apache Arrow
At its core, Apache Arrow [24] simply standardizes industrial best
practices to represent data in memory using cache-efficient colum-
nar layouts. By standardizing implementation details such as va-
lidity/null representations, endianness, variable length byte and
character data, lists, and nested structures, systems built with Ar-
row benefit from well-known techniques and easy data interchange
between applications. For example, while it is probably not critical
for most systems if a NULL value is represented by a 0 or 1 in a bit
mask, it is critical that all systems agree on the same convention
for interoperability.

Originally, Arrow was designed as an in-memory interchange
format and added compute-focused features such as StringView
[21] and high-performance compute kernels over time. Arrow users
can thus avoid re-implementing features that are well understood
in academia and industry, but time-consuming to implement.

2.2 Apache Parquet
Apache Parquet [26] is an open source column-oriented data file
format, originally designed for the Hadoop ecosystem and inspired
by academic work on columnar storage [74]. It provides efficient
data compression and encoding schemes, along with support for
structured types via record shredding [56], embedded schema de-
scription, zone-map [57] like index structures and Bloom filters for
fast data access.

Unlike Arrow, which is designed for fast random access and
efficient in-memory processing, Parquet is optimized to store large
amounts of data in a space-efficient manner. Like all formats, Par-
quet is not perfect, but it has become the de-facto standard for data
storage and interchange in the analytic ecosystem. Its combination
of open format, excellent compression across real-world data sets,
broad ecosystem and library support, and embedded self-describing
schema makes it a compelling choice for storing and exchanging
compressed data. In addition to compression and compatibility, the
file structure allows query engines to apply advanced projection
and filter push-down techniques, such as late materialization, di-
rectly on files, yielding competitive performance compared with
specialized formats [48].

2.3 Rust
Rust [76] is a relatively new system programming language, fea-
turing a low-level, yet safe memory management approach and
C-like performance. It incorporates an innovative memory owner-
ship model that mitigates many of the worst memory and thread
safety challenges prevalent in traditional C/C++ programming. Rust
programs are easy to embed in other systems as they do not re-
quire a language run-time and have C ABI compatibility. Rust’s
strong emphasis on zero-cost abstractions and its rich ecosystem of
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performance-centric libraries, along with developer-friendly docu-
mentation and diagnostic tools, make it a compelling choice for im-
plementing high-performance applications with a relatively lower
engineering investment.

Unlike many C/C++ build systems, which can require substantial
effort to just configure on a particular environment, Rust’s built-in
Cargo Package Manager[12] and crate ecosystem makes adding
DataFusion to most projects as simple as adding a single line to a
configuration file.

3 USE CASES
Awide variety of commercial products and open source projects use
DataFusion due to its combination of extensibility, feature set, fast
query performance, and ecosystem compatibility. Projects built on
DataFusion typically spend most time implementing value-adding
features rather than replicating existing analytic engine technolo-
gies. While still early in adoption, DataFusion is already used in:

(1) Tailored database systems for domain-specific use cases
such as time series databases (e.g. InfluxDB 3.0 [41] and
Coralogix [13]) and streaming SQL platforms (e.g. Synnada
[75] and Arroyo [4]).

(2) Execution run-times for specialized query front-ends, such
as Comet for Apache Spark (Section 3.1), or Seafowl [69] for
PostgreSQL [62] the Vega visualization language [55], and
the InfluxQL [40] time series query language.

(3) SQL analysis tools such as dask-sql [63] and SDF [68],
which use DataFusion’s SQL parser, planner, and plan repre-
sentation to analyze SQL queries.

(4) Table formats such as the Rust implementations of Delta
Lake [3], Apache Iceberg [30] and Lance [51], which use
DataFusion expressions and query plans to fetch and decode
remote data, implement predicate-based delete tombstones,
push predicates to specialized secondary indexes, and com-
pact files while retaining sort orders.

All these systems inherit the easy integration that comes with
being Arrow-native. For example, Lance provides APIs for users to
write Python functions that operate on RecordBatches using the
existing pyarrow [28] library without any data conversion required.

3.1 Accelerating Apache Spark
A special use case is accelerating Apache Spark [77], an open-source
analytic engine for large-scale data processing, widely adopted as
a standard tool for data engineering, data science, and machine
learning. Implemented primarily in JVM languages Scala and Java,
its performance suffers from well-known JVM overheads.

Spark will likely remain a major component of data infrastruc-
tures in the near term given its high adoption and easy-to-use
APIs. Fortunately, Spark’s design allows replacing just the execu-
tion engine with a specialized implementation such as Velox [60]
(open-source) or Photon [7] (proprietary).

DataFusion is used by several native Spark runtimes, includ-
ing Blaze [5] and Apache Arrow DataFusion Comet [11]. In these
projects, Spark’s query front-ends, parsing, analysis, and optimiza-
tion steps are used as is, while its execution plans are converted
to DataFusion ExecutionPlans (Section 5.5) that execute through
JNI interfaces with zero-copy data exchange via Apache Arrow.

In scenarios where Spark’s semantics differ from those offered
by DataFusion, DataFusion’s extensible design (Section 7) permits
projects to override and implement Spark specific expressions and
operators (e.g., decimal related operations where Spark semantics
deviate from ANSI SQL).

4 DECONSTRUCTED DATABASES
The rise of DataFusion and similar systems, such as Apache Cal-
cite [6] and Velox [60], is part of a longer-term trend away from
monolithic “one size fits all” general-purpose systems to “fit for
purpose” specialized systems [73]. Given the expense of building
the underlying technology, widespread proliferation of such spe-
cialized systems is only feasible when they can be assembled from
reusable high-quality components, a trend which has been called
the Deconstructed Database [44] [61].

The database systems literature offers a vast array of advanced
and thoroughly studied techniques for most operations. However,
due to economic and architectural constraints, these techniques
have historically been confined to tightly integrated, often propri-
etary databases or analogous analytic systems. This tight integra-
tion limits reuse, leading to numerous costly reimplementations.

One classic example of a re-implementation is data science anal-
ysis tools, such as pandas [59]. The data science community in-
novated new APIs (DataFrame vs. SQL) and preferred a different
deployment model (local files vs. networked servers), distinct from
most contemporary database offerings. However, these tools ini-
tially performed poorly and did not incorporate many well-known
techniques from database systems, such as query planning and op-
timization and parallel vectorized execution. In fact, Apache Arrow
was initially born out of a desire to bring such well-studied database
systems techniques to the data science ecosystem.

Another missed opportunity was the emergence of Map-Reduce
[19] and its open source implementation, Hadoop, for parallel dis-
tributed processing. Although database researchers pointed out
several ways that it was technically inferior [23], the lack of open
reusable components inevitably led to the reimplementation of
similar low-level analytical techniques.

4.1 Parallel with LLVM
The transition from very few monolithic implementations to many
specialized systems sharing an open source foundation has occurred
before. For example, system programming languages recently un-
derwent a similar transformation, enabled by LLVM [52]. Compilers
evolved from being tightly integrated with systems (IBM System
/ 390, Solaris, AIX HP-UX), to modular designs sharing the same
LLVM backend (Rust [76], Swift [37], Zig [31], Julia [8]). Similarly,
database systems evolved from tightly integrated systems directly
managing hardware and software (Oracle [16], SQL Server [15],
DB2 [14]) to fully modular designs sharing the same DataFusion
backend (InfluxDB 3.0, GreptimeDB, and Coralogix).

Just as LLVM’s modular design catalyzed the development of
system programming languages, DataFusion catalyzes the develop-
ment of data systems. Authors of programming languages now fo-
cus on language-specific features and use LLVM for critical, yet com-
monplace, features such as IRs, auto-vectorization, and architecture-
specific code generation. Authors of data systems can now focus on
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Figure 2: Architecture (Section 5). DataFusion’s standard query engine subsystems (green) run queries "out of the box". Systems
built on top of DataFusion customize behavior using extension APIs (blue).

value-added, domain-specific features and use DataFusion for fea-
tures like SQL parsing, plan representations, optimizations, storage
formats, and standard relational operators.

5 DATAFUSION FEATURES
5.1 Architecture Overview
DataFusion works “out of the box” while also providing extensive
customization APIs, which we describe in Section 7. This architec-
ture, shown in Figure 2, allows users to quickly start with a basic,
high-performance engine and specialize the implementation over
time to suit their needs and available engineering capacity. DataFu-
sion’s implementation follows industrial best practices, informed
by research literature, focusing on well-known patterns:

(1) Catalog and Data Sources provide schema and data layout
and location information.

(2) A Front End creates a tree of relational operators and expres-
sions, called a LogicalPlan.

(3) Optimizers, using analysis APIs rewrite the LogicalPlan
and expressions to a more optimal form.

(4) The LogicalPlan is lowered to an ExecutionPlan that in-
cludes characteristics of the intermediate results such as sort
order, and specific algorithm selections.

(5) Additional optimizers rewrite the ExecutionPlan to match
available physical resources and data layout.

(6) The ExecutionPlan is executed by Streams that incremen-
tally produce results.

5.2 Catalog and Data Sources
5.2.1 Catalog. In order to plan queries, like all query engines, Data-
Fusion needs a Catalog to provide metadata such as which tables
and columns exist, their data types, statistical information, and

storage details. DataFusion comes with a simple in-memory cata-
log and an Apache Hive [9]-style partitioned file/directory-based
catalog. More complex catalog implementations are not included
because catalog management is key system design decision and it
is unlikely such implementations would be widely usable. Instead,
most systems use the APIs described in Section 7.2 to supply catalog
information (e.g., directly from a Hive metastore).

5.2.2 Data Sources. DataFusion includes TableProviders for com-
monly used file formats: Apache Parquet, Apache Avro, JSON, CSV,
and Apache Arrow IPC files. The built in formats are implemented
via the exact same API as user defined TableProviders, and sup-
port many features such as predicate, projection, and limit push-
down. The Parquet reader uses the native Arrow Rust implementa-
tion and implements predicate pushdown and late materialization
(Section 6.8), bloom filters, and nested types. The CSV and JSON
readers automatically infer schema, and the JSON reader fully sup-
ports nested types.

5.3 Front Ends
5.3.1 Data Types. DataFusion directly uses the Apache Arrow type
system and inherits its broad range of supported types, including
integral and floating-point numerics of various byte widths, fixed
precision decimals, variable length character and binary strings,
dates, times, timestamps, intervals, duration types, nested structs
and lists. During execution, operators exchange data as either Ar-
row Arrays or scalar (single) values.

5.3.2 SQL Planner. DataFusion uses the sqlparser-rs [72] li-
brary to parse SQL text and generates a LogicalPlan from the
parsed query representation. While it is likely that no SQL imple-
mentation should ever claim to be "complete" given the amorphous,
ever-expanding SQL specification [42], DataFusion supports a large
subset of SQL features including WHERE, GROUP BY, ORDER BY, LIMIT,
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DISTINCT, WINDOW / OVER, UNION / INTERSECT, GROUPING SETS,
and FULL / INNER / OUTER JOIN. It also supports more ad-
vanced functionality such ROWS / VALUES PRECEDING, FOLLOWING,
UNBOUNDED window bounds, recursive CTEs, and GROUP BY with
per-aggregate FILTER and ORDER BY.

5.3.3 DataFrame and LogicalPlanBuilder APIs. In addition to
SQL, DataFusion also offers a DataFrame API, modeled after pandas
[59], for building query plans in a procedural style. The DataFrame
API generates the same underlying LogicalPlan representation
(Section 5.4.1) as the SQL API, and is optimized and executed the
sameway. For more advanced uses, such as custom query languages,
the LogicalPlanBuilder API offers a Rust builder-style interface
for constructing plans directly.

5.4 LogicalPlan and Optimizer
5.4.1 Plans and Expressions. DataFusion’s API includes: (1) A full
range of structures to represent and evaluate trees of expressions
and relational operators, both at logical (Expr and LogicalPlan)
and physical (PhysicalExpr and ExecutionPlan) levels, along
with routines to create and manipulate them ergonomically; (2) Li-
braries to (de)serialize these structures from/to bytes suitable for
network transport, both using Protocol Buffers as well as Substrait
[22]; (3) Structures to describe statistics that may be known at plan-
ning time, such as row counts, null counts and minimum/maximum
values.

5.4.2 Expression Analysis. In addition to basic expression eval-
uation, DataFusion provides libraries for simplification, interval
analysis [58], and range propagation. Combined with statistics,
these libraries provide predicate cardinality and selectivity esti-
mates, and plan-time partition elimination (e.g. Parquet row group
pruning, described in Section 6.8). These features are both usable
directly by client systems and used to implement DataFusion’s
built-in optimizations.

5.4.3 Function Library. DataFusion features a large library [29] of
built-in scalar, window, and aggregate functions, including string
operations, timestamp/date/timemanipulations, interval arithmetic,
and list/struct/map operations. These functions are implemented
using the same API as user-defined functions by manipulating
Arrow Arrays and can be invoked via both SQL or DataFrame APIs.

5.4.4 Rewrites. DataFusion includes an extensible plan rewriting
framework, implemented as a series of LogicalPlan and Exe-
cutionPlan rewrites. These passes handle details such as auto-
matically coercing types to match available operator and function
signatures, and introducing necessary sort and redistribution op-
erations. The same framework is used for optimizations as well
(Section 6.1).

5.5 Execution Engine
DataFusion uses a pull-based streaming execution model and dis-
tributes work across multiple cores using Volcano-style [33] ex-
change operators (viz. RepartitionExec).

5.5.1 Streaming Execution. Whenever possible, all operators pro-
duce output incrementally (Figure 3) as Arrow Arrays grouped

into RecordBatches, with a default size of 8192 rows. For pipeline-
breaking operations such as a full sort, final aggregation, or a hash
join, the operators buffer tuples, spilling to disk if necessary. Data
flows between Streams as Arrow Arrays, which allows for seam-
less integration of user-defined operators (Section 7.7).Within each
Stream, non-Arrow representations, such as the Row Format (Sec-
tion 6.6) are used when necessary to increase performance.

impl Stream for MyOperator {

...

// Pull next input (may yield at await)

while let Some(batch) = stream.next().await {

// Calculate, check if output is ready

if Some(output) = self.process(&batch)? {

// "Return" RecordBatch to output

tx.send(batch).await

}

}

...

}

Figure 3: Streaming Execution. Each Stream (operator) im-
plements the Rust Stream [32] trait, incrementally produc-
ing Apache Arrow RecordBatches that flow through the plan.
Control flow is managed using Rust’s built-in await contin-
uation generation, automatically marshaling the necessary
state before yielding control. Each Stream attempts to output
RecordBatches with a target number of tuples.

5.5.2 Multi-Core Execution. Each ExecutionPlan is run using one
or more Streams (i.e. operators) that execute in parallel. Most
Streams coordinate only with their input(s), though some must
coordinate with sibling Streams, such as a HashJoinExec when
building a shared hash table or a RepartitionExec when redis-
tributing data to different streams. The number of Streams created
for each ExecutionPlan is called its partitioning, which is deter-
mined at plan time (Figure 4).

5.5.3 Thread Scheduling. DataFusion Streams are implemented as
Rust async functions and run on a thread pool implemented as a
Tokio [67] runtime. Tokio is one of the most widely used libraries
in the Rust ecosystem and was initially designed for asynchronous
network I/O. However, its combination of an efficient, work-stealing
scheduler, first-class compiler support for automatic continuation
generation, and exceptional performance makes it a compelling
choice for CPU-intensive applications as well [46]. While some
recent work [53] describes challenges with the Volcano model on
NUMA architectures, DataFusion achieves similar scalability as
systems that use alternate designs (Section 8.2).

5.5.4 Memory Management. DataFusion manages memory using
a MemoryPool, which is shared between one or more concurrently
running queries. Streams cooperatively record when their memory
consumption changes substantially by calling grow and shrink
APIs. Stream implementations use a pragmatic approach, accu-
rately tracking the largest memory consumers (e.g., contents of the
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Figure 4: Partitioned Execution: Each ExecutionPlan is anno-
tated with a number of partitions chosen by the planner, and
a Stream (operator) is created for each partition. The Streams
run independently on multiple threads. In this figure, the
FilterExec ExecutionPlan (top) has 4 partitions. Thus, 4 dis-
tinct FilterStream operators are created during execution,
and they run in parallel without coordination.

hash table for hash aggregation), but not small ephemeral alloca-
tions (e.g., memory for the current output batch).

DataFusion has two built-in memory pool implementations.
GreedyPool, enforces per-process memory limits but does not
attempt to distribute resources fairly across Streams in a query.
FairPool distributes resources evenly among all pipeline-breaking
Streams. DataFusion-based systems typically implement their own
MemoryPools with domain-specific policies using the same API.

6 OPTIMIZATIONS
Query engines allow users to express desired results, and the engine
handles the many details necessary to compute them efficiently.
This section enumerates some of the techniques used by DataFusion
to efficiently execute queries.

The techniques are not novel; each has been extensively studied
and documented in research literature and implementedmany times
in commercial systems. DataFusion’s contribution is offering open-
source, well-tested, extensible implementations which allow new
systems to avoid the cost of re-implementing them (yet) again.

6.1 Query Rewrites
DataFusion includes a variety of query rewrites for both LogicalPlans
and ExecutionPlans. LogicalPlan rewrites include projection
pushdown, filter pushdown, limit pushdown, expression simplifica-
tion, common subexpression elimination, join predicate extraction,
correlated subquery flattening, and outer-to-inner join conversion.
ExecutionPlan rewrites include eliminating unnecessary sorts,
maximizing parallel execution, and determining specific algorithms
such as Hash or Merge joins.

6.2 Sorting
Sorting, along with grouping and joining, is one of the most ex-
pensive operations in an analytic system and is well-studied in
the literature. Most commercial analytic systems include heavily
optimized multicolumn sorting implementations, and DataFusion
is no exception. Broadly based on the techniques described in [34],
it incorporates a tree of losers, normalized keys (RowFormat de-
scribed in Section 6.6), the ability to spill to temporary disk files
when memory is exhausted, and specialized implementations for
LIMIT (aka "Top K").

6.3 Grouping and Aggregation
Similarly to sorting, grouped aggregations are a core part of any
analytic tool, as they create understandable summaries of large data
volumes and thus are both well-studied and highly optimized in
industrial systems. DataFusion contains a two-phase parallel par-
titioned hash grouping implementation [50], featuring vectorized
execution, the ability to spill to disk when memory is exhausted,
and special handling for no, partially ordered, and fully ordered
group keys.

6.4 Joins
When joining multiple relations, DataFusion automatically identi-
fies equality (equi-join) predicates, heuristically reorders joins based
on statistics, pushes predicates through joins (subject to OUTER
join restrictions), introduces transitive join predicates, and picks the
optimal physical join algorithm. It includes parallel in-memory hash
join, merge join, symmetric hash join, nested loops join and cross
join implementations which each support Inner, Left, Right, Full,
LeftSemi, RightSemi, LeftAnti, RightAnti joins, and are optimized
for equality predicates. The in-memory hash join is implemented
using vectorized hashing and collision checking similar to the al-
gorithm described in [36]. While not implemented at the time of
writing, we are working on additional join performance such as
dynamically applying join filters during scans1, a form of sideways
information passing [70].

6.5 Window Functions
DataFusion supports SQL Window Functions (e.g. functions that
have an OVER clause). Like most optimized window function imple-
mentations, DataFusion minimizes resorting by reusing existing
sort orders, sorting only if necessary based on the PARTITION BY
and ORDER BY clauses. It evaluates window functions incrementally
[2], producing output once the required input window is present.

1https://github.com/apache/arrow-datafusion/issues/7955
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We have not yet found the need to implement newer, more sophis-
ticated (and complex) schemes such as Physical Segment Trees [54]
as the processing time of queries with window functions is typically
dominated by other operations such as sorting.

6.6 Normalized Sort Keys / RowFormat
Columnar engines like DataFusion perform well on operations that
naturally vectorize. However, query processing also requires effi-
cient fundamentally row-based operations such as multi-column
sorting and multi-column equality comparisons for grouping and
joins, where the per row overhead can not be amortized by vector-
ization [43]. Within such operators, DataFusion uses a RowFormat
[49], a form of normalized key [34] which 1) permits byte-wise
comparisons using memcmp and 2) offers predictable memory ac-
cess patterns. The RowFormat is densely packed, one column after
another, with specialized encoding schemes for each data type, op-
tionally adjusted for SQL sort options, such as ASC or DESC order
and NULL placement. For example, unsigned and signed integers are
encoded using their big-endian representation, whereas floating-
point numbers are converted to a signed integer representation
that incorporates the sign bit.

6.7 Leveraging Sort Order
DataFusion’s Optimizer is aware of, and takes advantage of, any
pre-existing order in the input or intermediate results that flow
from Stream to Stream. DataFusion 1) tracks multiple sort orders2
and 2) includes Streams optimized for sorted or partially sorted
input, such as Merge Join and partially ordered (streaming) Hash
Aggregation.

Leveraging sort-order is important for at least two reasons:

(1) Physical Clustering: Secondary indexes are often too ex-
pensive to maintain at the high ingest rates required for
many OLAP systems, leaving the sort order of primary stor-
age as the only available mechanism to cluster data.

(2) Memory Usage and Streaming Execution: The sort order
defines how the data that flows through Streams is parti-
tioned during execution, defining where values may change
and thus where intermediate results can be emitted.

6.8 Pushdown and Late Materialization
DataFusion pushes several operations down (towards the data
sources): 1) projection (column selection) which elides unnecessary
columns from intermediate results 2) LIMIT and OFFSET, which per-
mits the plan to stop early when results are no longer needed and
3) predicates which moves filtering closer (or in) to data sources,
minimizing the amount of data processed by the rest of the plan.

Pushing filters into data source enables TableProvideres to ap-
ply filters during the scan, potentially avoiding significant work
during execution. For example, DataFusions’s Parquet reader uses
pushed-down predicates to 1) prune (skip) entire Row Groups and
Data Pages based on metadata and Bloom filters and 2) apply predi-
cates after decoding only a subset of column values, a form of late
materialization [1] which can avoid the effort required to decode

2E.g. data is sorted by (A, B) and (A, C) via an order preserving join on B=C

values in other columns that will be filtered out. To illustrate, con-
sider a query with the condition A > 35 AND B = "F". DataFusion’s
Parquet reader runs through these steps:

(1) Prunes (skips) all Row Groups such that 𝐴𝑚𝑎𝑥 <= 35 or
𝐵𝑚𝑎𝑥 < "F" or 𝐵𝑚𝑖𝑛 > "F" using Row Group metadata.

(2) Decodes column B, and evaluates B = "F", capturing all rows
which pass as a RowSelection (e.g. row indexes [100-244]).

(3) Decodes only pages that contain the relevant rows from
Column A, using the Page Index, and evaluates𝐴 > 35 further
refining the RowSelection (e.g. to row indexes [100-150]).

(4) Decodes the pages containing the remaining RowSelection
for any other selected columns (e.g. C).

Together, these techniques are very effective when predicate
columns are cluster together such as when they appear early in the
sort order of a sorted file [48].

7 EXTENSIBILITIES
This section describes the extension points for DataFusion, which
are sufficiently flexible to support a wide variety of use cases (Sec-
tion 3). This list of extension APIs offers a blueprint for other modu-
lar query engines and follows best practices for the internal bound-
aries of more tightly integrated systems.

Batches of data are represented as ColumnarValues, either a
single scalar value or an Arrow Array. Because DataFusion itself
uses Arrow throughout, extensions have the same performance
as built-in functionality and they can use the same wide range of
existing libraries, knowledge, and tools (e.g. computation kernels
and Arrow Flight for network transfer).

7.1 Scalar, Aggregate, and Window Functions
Systems built on DataFusion often add use case specific functions
that don’t belong in a general function library such as window
functions that compute derivatives, calendar bucketing for time-
series, and custom cryptography functions. Systems can regis-
ter the following types of functions dynamically, which receive
ColumnarValues as input and produce ColumnarValues as output:

(1) Scalar: single output row for each input row
(2) Aggregate: single output row for many input rows
(3) Window: single output row for each input row; calculation

has access to values in a surrounding window frame

DataFusion is not, of course, the first engine with user-defined
function APIs. However, APIs in other systems are often limited in
performance and functionality compared with built-in functions.
Even when similarly performant APIs do exist, they are challenging
to work with because they are tightly bound to engine specific
data representations. Working with engine specific representations
is especially challenging in column-oriented engines, due to the
complexity of vectorization [43].

7.2 Catalog
Using a combination of the Catalog API and expression evaluation
(Section 5.4.1), Catalogs built with DataFusion use file metadata
(such as minimum and maximum values) to avoid reading entire
files or parts of files (e.g. Parquet Row Groups). For example, the
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Rust implementation of the Delta Lake table format [20] uses Data-
Fusion to skip reading Parquet files based on filter predicates.

The Catalog API consists of 1) TableProvider for individual ta-
bles (Section 7.3), 2) SchemaProvider, a collection of TableProviders,
and 2) CatalogProvider, a collection of SchemaProviders, some-
times referred to as a "catalog" or "database" in other systems. These
APIs are async Rust functions, making it straightforward to inte-
grate network I/O to access remote catalogs.

7.3 Data Sources
Using the DataFusion TableProvider trait, systems can query in-
memory buffers of Arrow Arrays, stream data from remote servers
(perhaps via Arrow Flight), or read from custom file formats. Data-
Fusion’s built-in providers (Section 5.2.2) are implemented with
the same API exposed to users, and produce the same Rust async
Stream of Arrow Arrays as ExecutionPlans. The TableProvider
API supports 1) partitioned inputs, 2) pushdown of projection, fil-
ter, and limit, 3) parallel concurrent reads, and 4) pre-existing sort
orders, 5) statistics and 6) updates.

Similarly to user-defined functions, it is challenging to offer
user-defined data sources that perform as well as built-in formats
in tightly integrated engines. Not only must the implementation
produce data in the engine’s native format, it must also interact
with the engine’s expression representation to implement predicate
pushdown, and potentially perform asynchronous network I/O to
implement incremental (streaming) output.

7.4 Execution Environment
Execution environments vary widely from system to system. For
example, if fast local storage (e.g. NVMe) is available, caching meta-
data in memory might make less sense than in environments where
it is not available (e.g. some Kubernetes environments). Likewise,
some systems run multiple queries concurrently, optimistically
sharing resources, and others run a mix of queries with predefined
resource budgets.

DataFusion can be customized for different environments using
resource management APIs. MemoryPool is described in Section
5.5.4. DiskManager creates reference counted spill files if config-
ured. CacheManager caches directory contents (e.g. expensive ob-
ject store LIST operations) and per-file metadata such as statistics
required for planning and pruning (Section 6.8). Caching such in-
formation is important when querying from disaggregated storage
such as object stores. Similarly to other APIs, DataFusion comes
with simple implementations, and users who require more tailored
policies provide their own implementations (e.g. eviction policies
or limiting temp space).

7.5 New Query / Language Frontends
Users extend the SQL supported by DataFusion by rewriting the
AST prior to calling the DataFusion SQL planner (Section 5.3.2).
For more substantial extensions or entirely different languages (e.g.
PromQL or Vega), users implement their own frontends that create
LogicalPlans using the structures described in Section 5.4.1.

7.6 Query Rewrites / Optimizer Passes
DataFusion users ad domain-specific optimizations such as input re-
ordering and macro expansions by implementing OptimizerRules
and PhysicalOptimizerRules, which rewrite LogicalPlan and
ExecutionPlan trees, respectively, with the same APIs as built-in
rewrites (Section 6.1). Users can also specify the order in which
rewrites are applied, both provided as well as their own.

7.7 Relational Operators
Domain-specific systems often require relational operations not
found in SQL-only systems. For example, InfluxDB IOx [39] has
specialized operators for timeseries gap filling, schema pivoting
operations, and insert order resolution.

Users extend DataFusion by implementing the ExecutionPlan
trait, the same as the nodes provided with DataFusion, such as
join, filter, group by, and windowing. DataFusion does not distin-
guish between user-defined and built-in ExecutionPlans during
optimization and execution. While other systems such as [71] offer
similar functionality in the form of user defined table functions,
those APIs typically restrict the syntax and placement of those oper-
ators, and are often unable to perform as well as built-in operators.

8 PERFORMANCE EVALUATION
To quantify the performance penalty of using open standards and
a modular architecture, rather than a tightly integrated design, we
compared DataFusion’s performance to DuckDB [66], a system
we think exemplifies a state-of-the-art, tightly integrated analytic
engine at the time of writing. DataFusion performs similarly over
a variety of real-world usecases. Although we acknowledge the
challenges of benchmarking [65], different target use cases, and the
rate of change in both engines, our experiments show that there is
nothing fundamental about an open design that limits performance.

The most important performance metric for query engines is the
end-to-end query execution time, which we measured for bench-
marks that reflect commonly encountered data sizes and queries:

(1) ClickBench [38] models large scale web analytic processing,
with queries that filter and aggregate a large denormalized
dataset.We used the unmodified 14GB athena_partitioned
dataset, which consists of 100 Parquet files, each approxi-
mately 140 MB in size.

(2) TPC-H [17] models classic data warehouse analytics with
22 queries that join several tables in summary reports. We
used the TPC-H data generator with Scale Factor=10 and
converted the 8 resulting CSV files to parquet files, limiting
row groups to 1M records, with total size of 2.5 GB.

(3) H2O-G [35], models operations commonly found in data
science workloads. We ran the groupby task queries on the
G1_1e7_1e2_5_0.csv dataset, a single 488MB comma sep-
arated value (CSV) file with 10M records.

We ran all benchmarks directly on the raw source data files.
While transforming and loading into specialized per-database for-
mats is common in previous generation systems, we believe that
this approach is increasingly impractical as data flows become more
fluid and dynamic. For our target systems, data is most commonly
read and written using open formats using a diverse ecosystem of
tools.
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Query DataFusion DuckDB Delta
1 1.22 0.18 6.74x slower
2 0.36 0.81 2.25x faster
3 1.11 1.78 1.6x faster
4 1.09 1.5 1.38x faster
5 20.74 8.34 2.49x slower
6 17.81 11.98 1.49x slower
7 0.3 2.08 6.91x faster
8 0.37 0.83 2.24x faster
9 27.91 10.83 2.58x slower
10 25.84 14.11 1.83x slower
11 4.29 3.22 1.33x slower
12 4.67 8.69 1.86x faster
13 11.38 10.27 1.11x slower
14 26.96 14.61 1.84x slower
15 12.7 11.15 1.14x slower
16 13.31 9.12 1.46x slower
17 29.6 21.97 1.35x slower
18 29.09 21.23 1.37x slower
19 92.31 39.1 2.36x slower
20 0.8 1.33 1.65x faster
25 6.01 8.44 1.4x faster
26 5.02 6.11 1.22x faster
27 6.59 8.4 1.28x faster
28 23.62 23.85 1.01x faster
29 107.41 62.99 1.71x slower
30 5.91 69.08 11.7x faster
31 12.59 12.95 1.03x faster
32 14.85 15.93 1.07x faster
33 92.17 57.2 1.61x slower
36 27.89 11.48 2.43x slower
37 0.67 0.52 1.31x slower
38 0.34 0.38 1.12x faster
39 0.34 0.42 1.24x faster
40 2.05 0.83 2.46x slower
41 0.2 0.25 1.28x faster
42 0.17 0.24 1.43x faster
43 0.19 0.27 1.44x faster

Table 1: ClickBench performance on a single core, in seconds,
processing a 14GB dataset partitioned into 100 parquet files.

We measured performance of DataFusion 32.0.0 and DuckDB
0.9.1, the most recently released versions as of the time of this writ-
ing, using their respective Python bindings. We evaluate per core
efficiency in Section 8.1 and multithreaded scalability in Section
8.2. Our scripts are available online3.

8.1 Single Core Efficiency
To measure the CPU efficiency of each engine, we ran the bench-
mark queries using an Intel Broadwell CPU, 32 GB of RAM with 8
virtual cores on an e2-standard-8 VM instance on Google Cloud
Platform. We measured using Ubuntu 22.04.3 LTS and the Linux

3https://github.com/JayjeetAtGithub/datafusion-duckdb-benchmark
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Figure 5: TPC-H SF=10 performance on a single core, one
parquet file per table.

1 2 3 4 5 6 7 8 9 10
Query

0

5

10

15

20

25

Du
ra

tio
n 

(s
)

engine
duckdb
datafusion

Figure 6: H2O-G (grouping) performance on single core with
a single 488MB CSV file.

kernel version 6.2.0-1013-gcp. We limited each engine to a sin-
gle core, in DataFusion by setting target_partitions to 1 and in
DuckDB by setting the threads PRAGMA to 1.

ClickBench: Table 1 shows query execution time for the Click-
Bench queries. DataFusion performs better on queries with highly
selective predicates such as Q2, Q8, and Q20 likely due to its ability
to push predicates into the parquet scan to skip entire row groups.
DataFusion also does well for queries with a single group such Q4
and Q7 and Q30, likely due to its vectorized aggregate updates. For
queries with medium selectivity and medium group cardinally, such
as Q15, Q31, Q32, Q41 and Q42 the engines have similar perfor-
mance. For queries that have high group cardinally (10M groups or
more) such as Q18, Q19, Q36, DuckDB performs better, likely due
to its optimized parallel group by aggregation [45].

TPC-H: Figure 5 shows query execution time for TPC-H queries.
Unlike ClickBench, most queries in TPC-H join multiple tables.
DataFusion is faster for some queries such as Q4 and Q9, with highly
selective predicates. There are some queries where performance is
roughly equal such as Q3, Q6 andQ14. There are also several queries
where DataFusion is well over 2x slower, such as Q11, Q17, Q18,
and Q21. Much of this differences is due to a suboptimal join order4,
and when we manually force a better join order, the performance
of the two systems becomes similar.

H2O-G Figure 6 shows query execution time for the H20-G
queries. DataFusion has slightly better performance formost queries,
though is significantly worse for Q9, due to an inefficient imple-
mentation of the corr aggregate function. The performance of all
queries is largely dominated by the time spent parsing the CSV file,
and DataFusion benefits from the optimized CSV parser included
in the Rust implementation of Apache Arrow. Limiting to a single
core may also unfairly penalize DuckDB, which seems to optimize
4https://github.com/apache/arrow-datafusion/issues/7949
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multi-threaded parsing5, while a similar trade off doesn’t exist for
DataFusion.

Discussion Both engines perform similarly using a single core,
with different strengths and weaknesses depending on attributes
of the particular query. We conclude that there is nothing about
using open standards that fundamentally limits DataFusion’s per-
formance. Our intuition and experience in implementing industrial
systems is that the determining factor is instead available engi-
neering investment. DataFusion’s community already has projects
underway to improve performance for query patterns where it
lags DuckDB in these benchmarks, such as join ordering6 and high
cardinally grouping7. Likewise, we expect that DuckDB’s perfor-
mance will improve in areas where it lags DataFusion such as low
cardinally grouping, parquet predicate pushdown, and CSV parsing
with additional investment.

8.2 Scalability
DataFusion is often used as a single-node engine, or the embedded
engine in distributed systems, so its ability to scale "up" and use the
resources of multiple cores in a single machine is important. Figure
7 shows how performance varies with increasing core count.We ran
each ClickBench query 5 times, varying the number of cores from 1
to 192, plotting the final 3 runs to remove any caching or warm-up
effects. We ran this experiment on the highest end CPU available to
us on Google Cloud Platform, a c3-highcpu-176 instance with the
Intel Sapphire Rapids micro-architecture, 176 virtual CPUs (cores),
and 352 GB of memory. We ran all experiments using Ubuntu 22.04
with Linux kernel version 6.2.0-1016-gcp.

Relative performance The absolute value of the y axis is im-
portant. Some queries like Q10 take seconds to execute, while other
queries like Q1 take less than a second. Thus, even while the rela-
tive performance difference between the two engines may appear
substantial in some queries, such as Q1-Q4 or Q37-Q42, the absolute
difference is 100s of milliseconds, while the absolute difference in
queries such as Q19, Q32 and Q33 is an order of magnitude higher.

1, 2, 3, 8, 16, 32 cores Up to 32 cores, both DataFusion and
DuckDB show excellent, near-linear decrease in execution times as
the core counts increase.

64, 128, 192 cores At higher core counts, both engines show
a mix of better and worse performance. In Q28 and Q29, perfor-
mance continues to improve as the core count increases, close to
the ideal curve. These queries contain low (6000) and medium (3M)
cardinality grouping operations and require significant CPU effort
to evaluate LIKE string matching predicates. In queries such as
Q11, Q14, and Q32 both engines show a pronounced increase in
query duration (they slow down) with more cores, likely because
as the work done by each core decreases, the relative overhead of
coordinating between the cores increases. In queries such as Q41,
Q42 and Q43, the slowdown at high core count is more pronounced
for DataFusion8, and in some queries such as Q25 and Q26 it is
more pronounced for DuckDB.

5https://github.com/duckdb/duckdb/issues/9136
6https://github.com/apache/arrow-datafusion/issues/7949
7https://github.com/apache/arrow-datafusion/issues/5546
8Some of the slowdown in DataFusion is due to a poorly tuned hash table flushing
strategy for high cardinalities https://github.com/apache/arrow-datafusion/issues/6937

Discussion DataFusion and DuckDB exhibit similar scaling
behavior, and thus we conclude DataFusion’s modular design and
pull based scheduler do not preclude state of the art multi-core
performance. The curves in Figure 7 for both engines are similar in
shape, suggesting the differences are largely due to implementation
details rather than fundamental differences in design.

9 RELATEDWORK
The theme of more modular and composable architectures was
observed at least as early as 2000 [10]. The term “Deconstructed
Database” was initially popularized in 2018 [44], and there are
recent calls to accelerate the adoption of modular designs [61].

Velox [60] and Apache Calcite [6] both provide components for
assembling new databases and analytic systems. However, build-
ing a working end-to-end system requires substantial integration
(e.g. bridging JVM and Native code and build systems), while using
DataFusion requires a single configuration line. Modular designs
allow swapping components based on use case, and the Photon [7]
and Gluten [64] (based on Velox) projects replace just one mod-
ule, the execution engine, of Apache Spark with a faster native
implementation.

Similarly to DataFusion, DuckDB [66] is an open-source SQL
system that does not require a separate server. DuckDB is targeted at
users who run SQL, while DataFusion is targeted at people building
new systems (that may run SQL as well as other types of processing).
DuckDB has a more limited extension API and its own custom in-
memory representation, storage format, Parquet implementation,
and thread scheduler.

9.1 Future Research
Evaluating additional lines of code or engineering hours required
to build a system from scratch without DataFusion, a study of
how DataFusion’s extensibility APIs are used in practice, and a
systematic evaluation of end to end performance of DataFusion
based applications would all help explore the trade offs encoun-
tered building systems using modular query engines. There is also
a need for modular systems like DataFusion to accelerate other
areas of database implementation, such as transaction processing
and distributed key/value stores. First-class support, either as bind-
ings to DataFusion or separate implementations, for other systems
languages like C/C++ and Swift, are also needed.

10 CONCLUSION
Since the introduction of LLVM, the need to build compilers from
scratch has been significantly reduced. With the emergence of
technologies like DataFusion, the need to build database systems
from the scratch should become similarly rare. Of course, with
sufficient engineering investment, a tightly integrated engine can
theoretically outperform a modular one. However, as the effort
to reach state-of-the-art functionality and performance increases
ever more, we believe that widely used, modular engines such as
DataFusion will attract the required investment from large open-
source communities and provide a richer feature set and better
performance than all but the most well-resourced tightly integrated
designs.
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Figure 7: Query duration for ClickBench queries using 1, 2, 4, 8, 16, 32, 64, 128, or 192 cores, respectively.

Modular designs are by no means the only strategy for building
systems, and we continue to see new tightly integrated systems
emerge. However, as awareness of systems such as DataFusion
increases, we predict adoption will accelerate and an explosion of
new analytic systems will emerge that would previously not have
been possible.
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