-
Notifications
You must be signed in to change notification settings - Fork 14.3k
/
Copy pathviz.py
3078 lines (2580 loc) · 103 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=C,R,W
"""This module contains the 'Viz' objects
These objects represent the backend of all the visualizations that
Superset can render.
"""
import copy
import dataclasses
import inspect
import logging
import math
import re
from collections import defaultdict, OrderedDict
from datetime import date, datetime, timedelta
from itertools import product
from typing import (
Any,
Callable,
cast,
Dict,
List,
Optional,
Set,
Tuple,
TYPE_CHECKING,
Union,
)
import geohash
import numpy as np
import pandas as pd
import polyline
import simplejson as json
from dateutil import relativedelta as rdelta
from flask import request
from flask_babel import lazy_gettext as _
from geopy.point import Point
from pandas.tseries.frequencies import to_offset
from superset import app, cache, db, is_feature_enabled, security_manager
from superset.constants import NULL_STRING
from superset.errors import ErrorLevel, SupersetError, SupersetErrorType
from superset.exceptions import (
NullValueException,
QueryObjectValidationError,
SpatialException,
)
from superset.models.cache import CacheKey
from superset.models.helpers import QueryResult
from superset.typing import QueryObjectDict, VizData, VizPayload
from superset.utils import core as utils
from superset.utils.core import (
DTTM_ALIAS,
JS_MAX_INTEGER,
merge_extra_filters,
QueryMode,
to_adhoc,
)
from superset.utils.dates import datetime_to_epoch
from superset.utils.hashing import md5_sha_from_str
if TYPE_CHECKING:
from superset.connectors.base.models import BaseDatasource
config = app.config
stats_logger = config["STATS_LOGGER"]
relative_start = config["DEFAULT_RELATIVE_START_TIME"]
relative_end = config["DEFAULT_RELATIVE_END_TIME"]
logger = logging.getLogger(__name__)
METRIC_KEYS = [
"metric",
"metrics",
"percent_metrics",
"metric_2",
"secondary_metric",
"x",
"y",
"size",
]
def set_and_log_cache(
cache_key: str,
df: pd.DataFrame,
query: str,
cached_dttm: str,
cache_timeout: int,
datasource_uid: Optional[str],
) -> None:
try:
cache_value = dict(dttm=cached_dttm, df=df, query=query)
stats_logger.incr("set_cache_key")
cache.set(cache_key, cache_value, timeout=cache_timeout)
if datasource_uid:
ck = CacheKey(
cache_key=cache_key,
cache_timeout=cache_timeout,
datasource_uid=datasource_uid,
)
db.session.add(ck)
except Exception as ex:
# cache.set call can fail if the backend is down or if
# the key is too large or whatever other reasons
logger.warning("Could not cache key {}".format(cache_key))
logger.exception(ex)
cache.delete(cache_key)
class BaseViz:
"""All visualizations derive this base class"""
viz_type: Optional[str] = None
verbose_name = "Base Viz"
credits = ""
is_timeseries = False
cache_type = "df"
enforce_numerical_metrics = True
def __init__(
self,
datasource: "BaseDatasource",
form_data: Dict[str, Any],
force: bool = False,
) -> None:
if not datasource:
raise QueryObjectValidationError(_("Viz is missing a datasource"))
self.datasource = datasource
self.request = request
self.viz_type = form_data.get("viz_type")
self.form_data = form_data
self.query = ""
self.token = utils.get_form_data_token(form_data)
self.groupby: List[str] = self.form_data.get("groupby") or []
self.time_shift = timedelta()
self.status: Optional[str] = None
self.error_msg = ""
self.results: Optional[QueryResult] = None
self.errors: List[Dict[str, Any]] = []
self.force = force
self.from_dttm: Optional[datetime] = None
self.to_dttm: Optional[datetime] = None
# Keeping track of whether some data came from cache
# this is useful to trigger the <CachedLabel /> when
# in the cases where visualization have many queries
# (FilterBox for instance)
self._any_cache_key: Optional[str] = None
self._any_cached_dttm: Optional[str] = None
self._extra_chart_data: List[Tuple[str, pd.DataFrame]] = []
self.process_metrics()
self.applied_filters: List[Dict[str, str]] = []
self.rejected_filters: List[Dict[str, str]] = []
def process_metrics(self) -> None:
# metrics in TableViz is order sensitive, so metric_dict should be
# OrderedDict
self.metric_dict = OrderedDict()
fd = self.form_data
for mkey in METRIC_KEYS:
val = fd.get(mkey)
if val:
if not isinstance(val, list):
val = [val]
for o in val:
label = utils.get_metric_name(o)
self.metric_dict[label] = o
# Cast to list needed to return serializable object in py3
self.all_metrics = list(self.metric_dict.values())
self.metric_labels = list(self.metric_dict.keys())
@staticmethod
def handle_js_int_overflow(
data: Dict[str, List[Dict[str, Any]]]
) -> Dict[str, List[Dict[str, Any]]]:
for d in data.get("records", {}):
for k, v in list(d.items()):
if isinstance(v, int):
# if an int is too big for Java Script to handle
# convert it to a string
if abs(v) > JS_MAX_INTEGER:
d[k] = str(v)
return data
def run_extra_queries(self) -> None:
"""Lifecycle method to use when more than one query is needed
In rare-ish cases, a visualization may need to execute multiple
queries. That is the case for FilterBox or for time comparison
in Line chart for instance.
In those cases, we need to make sure these queries run before the
main `get_payload` method gets called, so that the overall caching
metadata can be right. The way it works here is that if any of
the previous `get_df_payload` calls hit the cache, the main
payload's metadata will reflect that.
The multi-query support may need more work to become a first class
use case in the framework, and for the UI to reflect the subtleties
(show that only some of the queries were served from cache for
instance). In the meantime, since multi-query is rare, we treat
it with a bit of a hack. Note that the hack became necessary
when moving from caching the visualization's data itself, to caching
the underlying query(ies).
"""
pass
def apply_rolling(self, df: pd.DataFrame) -> pd.DataFrame:
fd = self.form_data
rolling_type = fd.get("rolling_type")
rolling_periods = int(fd.get("rolling_periods") or 0)
min_periods = int(fd.get("min_periods") or 0)
if rolling_type in ("mean", "std", "sum") and rolling_periods:
kwargs = dict(window=rolling_periods, min_periods=min_periods)
if rolling_type == "mean":
df = df.rolling(**kwargs).mean()
elif rolling_type == "std":
df = df.rolling(**kwargs).std()
elif rolling_type == "sum":
df = df.rolling(**kwargs).sum()
elif rolling_type == "cumsum":
df = df.cumsum()
if min_periods:
df = df[min_periods:]
if df.empty:
raise QueryObjectValidationError(
_(
"Applied rolling window did not return any data. Please make sure "
"the source query satisfies the minimum periods defined in the "
"rolling window."
)
)
return df
def get_samples(self) -> List[Dict[str, Any]]:
query_obj = self.query_obj()
query_obj.update(
{
"groupby": [],
"metrics": [],
"row_limit": config["SAMPLES_ROW_LIMIT"],
"columns": [o.column_name for o in self.datasource.columns],
}
)
df = self.get_df(query_obj)
return df.to_dict(orient="records")
def get_df(self, query_obj: Optional[QueryObjectDict] = None) -> pd.DataFrame:
"""Returns a pandas dataframe based on the query object"""
if not query_obj:
query_obj = self.query_obj()
if not query_obj:
return pd.DataFrame()
self.error_msg = ""
timestamp_format = None
if self.datasource.type == "table":
granularity_col = self.datasource.get_column(query_obj["granularity"])
if granularity_col:
timestamp_format = granularity_col.python_date_format
# The datasource here can be different backend but the interface is common
self.results = self.datasource.query(query_obj)
self.query = self.results.query
self.status = self.results.status
self.errors = self.results.errors
df = self.results.df
# Transform the timestamp we received from database to pandas supported
# datetime format. If no python_date_format is specified, the pattern will
# be considered as the default ISO date format
# If the datetime format is unix, the parse will use the corresponding
# parsing logic.
if not df.empty:
if DTTM_ALIAS in df.columns:
if timestamp_format in ("epoch_s", "epoch_ms"):
# Column has already been formatted as a timestamp.
dttm_col = df[DTTM_ALIAS]
one_ts_val = dttm_col[0]
# convert time column to pandas Timestamp, but different
# ways to convert depending on string or int types
try:
int(one_ts_val)
is_integral = True
except (ValueError, TypeError):
is_integral = False
if is_integral:
unit = "s" if timestamp_format == "epoch_s" else "ms"
df[DTTM_ALIAS] = pd.to_datetime(
dttm_col, utc=False, unit=unit, origin="unix"
)
else:
df[DTTM_ALIAS] = dttm_col.apply(pd.Timestamp)
else:
df[DTTM_ALIAS] = pd.to_datetime(
df[DTTM_ALIAS], utc=False, format=timestamp_format
)
if self.datasource.offset:
df[DTTM_ALIAS] += timedelta(hours=self.datasource.offset)
df[DTTM_ALIAS] += self.time_shift
if self.enforce_numerical_metrics:
self.df_metrics_to_num(df)
df.replace([np.inf, -np.inf], np.nan, inplace=True)
return df
def df_metrics_to_num(self, df: pd.DataFrame) -> None:
"""Converting metrics to numeric when pandas.read_sql cannot"""
metrics = self.metric_labels
for col, dtype in df.dtypes.items():
if dtype.type == np.object_ and col in metrics:
df[col] = pd.to_numeric(df[col], errors="coerce")
def process_query_filters(self) -> None:
utils.convert_legacy_filters_into_adhoc(self.form_data)
merge_extra_filters(self.form_data)
utils.split_adhoc_filters_into_base_filters(self.form_data)
def query_obj(self) -> QueryObjectDict:
"""Building a query object"""
form_data = self.form_data
self.process_query_filters()
gb = self.groupby
metrics = self.all_metrics or []
columns = form_data.get("columns") or []
# merge list and dedup while preserving order
groupby = list(OrderedDict.fromkeys(gb + columns))
is_timeseries = self.is_timeseries
if DTTM_ALIAS in groupby:
groupby.remove(DTTM_ALIAS)
is_timeseries = True
granularity = form_data.get("granularity") or form_data.get("granularity_sqla")
limit = int(form_data.get("limit") or 0)
timeseries_limit_metric = form_data.get("timeseries_limit_metric")
row_limit = int(form_data.get("row_limit") or config["ROW_LIMIT"])
# default order direction
order_desc = form_data.get("order_desc", True)
try:
since, until = utils.get_since_until(
relative_start=relative_start,
relative_end=relative_end,
time_range=form_data.get("time_range"),
since=form_data.get("since"),
until=form_data.get("until"),
)
except ValueError as ex:
raise QueryObjectValidationError(str(ex))
time_shift = form_data.get("time_shift", "")
self.time_shift = utils.parse_past_timedelta(time_shift)
from_dttm = None if since is None else (since - self.time_shift)
to_dttm = None if until is None else (until - self.time_shift)
if from_dttm and to_dttm and from_dttm > to_dttm:
raise QueryObjectValidationError(
_("From date cannot be larger than to date")
)
self.from_dttm = from_dttm
self.to_dttm = to_dttm
# extras are used to query elements specific to a datasource type
# for instance the extra where clause that applies only to Tables
extras = {
"druid_time_origin": form_data.get("druid_time_origin", ""),
"having": form_data.get("having", ""),
"having_druid": form_data.get("having_filters", []),
"time_grain_sqla": form_data.get("time_grain_sqla"),
"time_range_endpoints": form_data.get("time_range_endpoints"),
"where": form_data.get("where", ""),
}
return {
"granularity": granularity,
"from_dttm": from_dttm,
"to_dttm": to_dttm,
"is_timeseries": is_timeseries,
"groupby": groupby,
"metrics": metrics,
"row_limit": row_limit,
"filter": self.form_data.get("filters", []),
"timeseries_limit": limit,
"extras": extras,
"timeseries_limit_metric": timeseries_limit_metric,
"order_desc": order_desc,
}
@property
def cache_timeout(self) -> int:
if self.form_data.get("cache_timeout") is not None:
return int(self.form_data["cache_timeout"])
if self.datasource.cache_timeout is not None:
return self.datasource.cache_timeout
if (
hasattr(self.datasource, "database")
and self.datasource.database.cache_timeout
) is not None:
return self.datasource.database.cache_timeout
return config["CACHE_DEFAULT_TIMEOUT"]
def get_json(self) -> str:
return json.dumps(
self.get_payload(), default=utils.json_int_dttm_ser, ignore_nan=True
)
def cache_key(self, query_obj: QueryObjectDict, **extra: Any) -> str:
"""
The cache key is made out of the key/values in `query_obj`, plus any
other key/values in `extra`.
We remove datetime bounds that are hard values, and replace them with
the use-provided inputs to bounds, which may be time-relative (as in
"5 days ago" or "now").
The `extra` arguments are currently used by time shift queries, since
different time shifts wil differ only in the `from_dttm`, `to_dttm`,
`inner_from_dttm`, and `inner_to_dttm` values which are stripped.
"""
cache_dict = copy.copy(query_obj)
cache_dict.update(extra)
for k in ["from_dttm", "to_dttm", "inner_from_dttm", "inner_to_dttm"]:
if k in cache_dict:
del cache_dict[k]
cache_dict["time_range"] = self.form_data.get("time_range")
cache_dict["datasource"] = self.datasource.uid
cache_dict["extra_cache_keys"] = self.datasource.get_extra_cache_keys(query_obj)
cache_dict["rls"] = (
security_manager.get_rls_ids(self.datasource)
if is_feature_enabled("ROW_LEVEL_SECURITY")
and self.datasource.is_rls_supported
else []
)
cache_dict["changed_on"] = self.datasource.changed_on
json_data = self.json_dumps(cache_dict, sort_keys=True)
return md5_sha_from_str(json_data)
def get_payload(self, query_obj: Optional[QueryObjectDict] = None) -> VizPayload:
"""Returns a payload of metadata and data"""
self.run_extra_queries()
payload = self.get_df_payload(query_obj)
df = payload.get("df")
if self.status != utils.QueryStatus.FAILED:
payload["data"] = self.get_data(df)
if "df" in payload:
del payload["df"]
filters = self.form_data.get("filters", [])
filter_columns = [flt.get("col") for flt in filters]
columns = set(self.datasource.column_names)
applied_time_extras = self.form_data.get("applied_time_extras", {})
applied_time_columns, rejected_time_columns = utils.get_time_filter_status(
self.datasource, applied_time_extras
)
payload["applied_filters"] = [
{"column": col} for col in filter_columns if col in columns
] + applied_time_columns
payload["rejected_filters"] = [
{"reason": "not_in_datasource", "column": col}
for col in filter_columns
if col not in columns
] + rejected_time_columns
return payload
def get_df_payload(
self, query_obj: Optional[QueryObjectDict] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Handles caching around the df payload retrieval"""
if not query_obj:
query_obj = self.query_obj()
cache_key = self.cache_key(query_obj, **kwargs) if query_obj else None
logger.info("Cache key: {}".format(cache_key))
is_loaded = False
stacktrace = None
df = None
cached_dttm = datetime.utcnow().isoformat().split(".")[0]
if cache_key and cache and not self.force:
cache_value = cache.get(cache_key)
if cache_value:
stats_logger.incr("loading_from_cache")
try:
df = cache_value["df"]
self.query = cache_value["query"]
self._any_cached_dttm = cache_value["dttm"]
self._any_cache_key = cache_key
self.status = utils.QueryStatus.SUCCESS
is_loaded = True
stats_logger.incr("loaded_from_cache")
except Exception as ex:
logger.exception(ex)
logger.error(
"Error reading cache: " + utils.error_msg_from_exception(ex)
)
logger.info("Serving from cache")
if query_obj and not is_loaded:
try:
invalid_columns = [
col
for col in (query_obj.get("columns") or [])
+ (query_obj.get("groupby") or [])
+ utils.get_column_names_from_metrics(
cast(
List[Union[str, Dict[str, Any]]], query_obj.get("metrics"),
)
)
if col not in self.datasource.column_names
]
if invalid_columns:
raise QueryObjectValidationError(
_(
"Columns missing in datasource: %(invalid_columns)s",
invalid_columns=invalid_columns,
)
)
df = self.get_df(query_obj)
if self.status != utils.QueryStatus.FAILED:
stats_logger.incr("loaded_from_source")
if not self.force:
stats_logger.incr("loaded_from_source_without_force")
is_loaded = True
except QueryObjectValidationError as ex:
error = dataclasses.asdict(
SupersetError(
message=str(ex),
level=ErrorLevel.ERROR,
error_type=SupersetErrorType.VIZ_GET_DF_ERROR,
)
)
self.errors.append(error)
self.status = utils.QueryStatus.FAILED
except Exception as ex:
logger.exception(ex)
error = dataclasses.asdict(
SupersetError(
message=str(ex),
level=ErrorLevel.ERROR,
error_type=SupersetErrorType.VIZ_GET_DF_ERROR,
)
)
self.errors.append(error)
self.status = utils.QueryStatus.FAILED
stacktrace = utils.get_stacktrace()
if (
is_loaded
and cache_key
and cache
and self.status != utils.QueryStatus.FAILED
):
set_and_log_cache(
cache_key,
df,
self.query,
cached_dttm,
self.cache_timeout,
self.datasource.uid,
)
return {
"cache_key": self._any_cache_key,
"cached_dttm": self._any_cached_dttm,
"cache_timeout": self.cache_timeout,
"df": df,
"errors": self.errors,
"form_data": self.form_data,
"is_cached": self._any_cache_key is not None,
"query": self.query,
"from_dttm": self.from_dttm,
"to_dttm": self.to_dttm,
"status": self.status,
"stacktrace": stacktrace,
"rowcount": len(df.index) if df is not None else 0,
}
def json_dumps(self, obj: Any, sort_keys: bool = False) -> str:
return json.dumps(
obj, default=utils.json_int_dttm_ser, ignore_nan=True, sort_keys=sort_keys
)
def payload_json_and_has_error(self, payload: VizPayload) -> Tuple[str, bool]:
has_error = (
payload.get("status") == utils.QueryStatus.FAILED
or payload.get("error") is not None
or bool(payload.get("errors"))
)
return self.json_dumps(payload), has_error
@property
def data(self) -> Dict[str, Any]:
"""This is the data object serialized to the js layer"""
content = {
"form_data": self.form_data,
"token": self.token,
"viz_name": self.viz_type,
"filter_select_enabled": self.datasource.filter_select_enabled,
}
return content
def get_csv(self) -> Optional[str]:
df = self.get_df()
include_index = not isinstance(df.index, pd.RangeIndex)
return df.to_csv(index=include_index, **config["CSV_EXPORT"])
def get_data(self, df: pd.DataFrame) -> VizData:
return df.to_dict(orient="records")
@property
def json_data(self) -> str:
return json.dumps(self.data)
def raise_for_access(self) -> None:
"""
Raise an exception if the user cannot access the resource.
:raises SupersetSecurityException: If the user cannot access the resource
"""
security_manager.raise_for_access(viz=self)
class TableViz(BaseViz):
"""A basic html table that is sortable and searchable"""
viz_type = "table"
verbose_name = _("Table View")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = False
enforce_numerical_metrics = False
def process_metrics(self) -> None:
"""Process form data and store parsed column configs.
1. Determine query mode based on form_data params.
- Use `query_mode` if it has a valid value
- Set as RAW mode if `all_columns` is set
- Otherwise defaults to AGG mode
2. Determine output columns based on query mode.
"""
# Verify form data first: if not specifying query mode, then cannot have both
# GROUP BY and RAW COLUMNS.
fd = self.form_data
if (
not fd.get("query_mode")
and fd.get("all_columns")
and (fd.get("groupby") or fd.get("metrics") or fd.get("percent_metrics"))
):
raise QueryObjectValidationError(
_(
"You cannot use [Columns] in combination with "
"[Group By]/[Metrics]/[Percentage Metrics]. "
"Please choose one or the other."
)
)
super().process_metrics()
self.query_mode: QueryMode = QueryMode.get(fd.get("query_mode")) or (
# infer query mode from the presence of other fields
QueryMode.RAW
if len(fd.get("all_columns") or []) > 0
else QueryMode.AGGREGATE
)
columns: List[str] = [] # output columns sans time and percent_metric column
percent_columns: List[str] = [] # percent columns that needs extra computation
if self.query_mode == QueryMode.RAW:
columns = utils.get_metric_names(fd.get("all_columns") or [])
else:
columns = utils.get_metric_names(self.groupby + (fd.get("metrics") or []))
percent_columns = utils.get_metric_names(fd.get("percent_metrics") or [])
self.columns = columns
self.percent_columns = percent_columns
self.is_timeseries = self.should_be_timeseries()
def should_be_timeseries(self) -> bool:
fd = self.form_data
# TODO handle datasource-type-specific code in datasource
conditions_met = (fd.get("granularity") and fd.get("granularity") != "all") or (
fd.get("granularity_sqla") and fd.get("time_grain_sqla")
)
if fd.get("include_time") and not conditions_met:
raise QueryObjectValidationError(
_("Pick a granularity in the Time section or " "uncheck 'Include Time'")
)
return bool(fd.get("include_time"))
def query_obj(self) -> QueryObjectDict:
d = super().query_obj()
fd = self.form_data
if self.query_mode == QueryMode.RAW:
d["columns"] = fd.get("all_columns")
order_by_cols = fd.get("order_by_cols") or []
d["orderby"] = [json.loads(t) for t in order_by_cols]
# must disable groupby and metrics in raw mode
d["groupby"] = []
d["metrics"] = []
# raw mode does not support timeseries queries
d["timeseries_limit_metric"] = None
d["timeseries_limit"] = None
d["is_timeseries"] = None
else:
sort_by = fd.get("timeseries_limit_metric")
if sort_by:
sort_by_label = utils.get_metric_name(sort_by)
if sort_by_label not in d["metrics"]:
d["metrics"].append(sort_by)
d["orderby"] = [(sort_by, not fd.get("order_desc", True))]
elif d["metrics"]:
# Legacy behavior of sorting by first metric by default
first_metric = d["metrics"][0]
d["orderby"] = [(first_metric, not fd.get("order_desc", True))]
return d
def get_data(self, df: pd.DataFrame) -> VizData:
"""
Transform the query result to the table representation.
:param df: The interim dataframe
:returns: The table visualization data
The interim dataframe comprises of the group-by and non-group-by columns and
the union of the metrics representing the non-percent and percent metrics. Note
the percent metrics have yet to be transformed.
"""
# Transform the data frame to adhere to the UI ordering of the columns and
# metrics whilst simultaneously computing the percentages (via normalization)
# for the percent metrics.
if df.empty:
return None
columns, percent_columns = self.columns, self.percent_columns
if DTTM_ALIAS in df and self.is_timeseries:
columns = [DTTM_ALIAS] + columns
df = pd.concat(
[
df[columns],
(df[percent_columns].div(df[percent_columns].sum()).add_prefix("%")),
],
axis=1,
)
return self.handle_js_int_overflow(
dict(records=df.to_dict(orient="records"), columns=list(df.columns))
)
def json_dumps(self, obj: Any, sort_keys: bool = False) -> str:
return json.dumps(
obj, default=utils.json_iso_dttm_ser, sort_keys=sort_keys, ignore_nan=True
)
class TimeTableViz(BaseViz):
"""A data table with rich time-series related columns"""
viz_type = "time_table"
verbose_name = _("Time Table View")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = True
def query_obj(self) -> QueryObjectDict:
d = super().query_obj()
fd = self.form_data
if not fd.get("metrics"):
raise QueryObjectValidationError(_("Pick at least one metric"))
if fd.get("groupby") and len(fd["metrics"]) > 1:
raise QueryObjectValidationError(
_("When using 'Group By' you are limited to use a single metric")
)
return d
def get_data(self, df: pd.DataFrame) -> VizData:
if df.empty:
return None
fd = self.form_data
columns = None
values: Union[List[str], str] = self.metric_labels
if fd.get("groupby"):
values = self.metric_labels[0]
columns = fd.get("groupby")
pt = df.pivot_table(index=DTTM_ALIAS, columns=columns, values=values)
pt.index = pt.index.map(str)
pt = pt.sort_index()
return dict(
records=pt.to_dict(orient="index"),
columns=list(pt.columns),
is_group_by=len(fd.get("groupby", [])) > 0,
)
class PivotTableViz(BaseViz):
"""A pivot table view, define your rows, columns and metrics"""
viz_type = "pivot_table"
verbose_name = _("Pivot Table")
credits = 'a <a href="https://github.com/airbnb/superset">Superset</a> original'
is_timeseries = False
enforce_numerical_metrics = False
def query_obj(self) -> QueryObjectDict:
d = super().query_obj()
groupby = self.form_data.get("groupby")
columns = self.form_data.get("columns")
metrics = self.form_data.get("metrics")
transpose = self.form_data.get("transpose_pivot")
if not columns:
columns = []
if not groupby:
groupby = []
if not groupby:
raise QueryObjectValidationError(
_("Please choose at least one 'Group by' field ")
)
if transpose and not columns:
raise QueryObjectValidationError(
_(
(
"Please choose at least one 'Columns' field when "
"select 'Transpose Pivot' option"
)
)
)
if not metrics:
raise QueryObjectValidationError(_("Please choose at least one metric"))
if set(groupby) & set(columns):
raise QueryObjectValidationError(_("Group By' and 'Columns' can't overlap"))
return d
@staticmethod
def get_aggfunc(
metric: str, df: pd.DataFrame, form_data: Dict[str, Any]
) -> Union[str, Callable[[Any], Any]]:
aggfunc = form_data.get("pandas_aggfunc") or "sum"
if pd.api.types.is_numeric_dtype(df[metric]):
# Ensure that Pandas's sum function mimics that of SQL.
if aggfunc == "sum":
return lambda x: x.sum(min_count=1)
# only min and max work properly for non-numerics
return aggfunc if aggfunc in ("min", "max") else "max"
@staticmethod
def _format_datetime(value: Union[pd.Timestamp, datetime, date, str]) -> str:
"""
Format a timestamp in such a way that the viz will be able to apply
the correct formatting in the frontend.
:param value: the value of a temporal column
:return: formatted timestamp if it is a valid timestamp, otherwise
the original value
"""
tstamp: Optional[pd.Timestamp] = None
if isinstance(value, pd.Timestamp):
tstamp = value
if isinstance(value, datetime) or isinstance(value, date):
tstamp = pd.Timestamp(value)
if isinstance(value, str):
try:
tstamp = pd.Timestamp(value)
except ValueError:
pass
if tstamp:
return f"__timestamp:{datetime_to_epoch(tstamp)}"
# fallback in case something incompatible is returned
return cast(str, value)
def get_data(self, df: pd.DataFrame) -> VizData:
if df.empty:
return None
if self.form_data.get("granularity") == "all" and DTTM_ALIAS in df:
del df[DTTM_ALIAS]
metrics = [utils.get_metric_name(m) for m in self.form_data["metrics"]]
aggfuncs: Dict[str, Union[str, Callable[[Any], Any]]] = {}
for metric in metrics:
aggfuncs[metric] = self.get_aggfunc(metric, df, self.form_data)
groupby = self.form_data.get("groupby") or []
columns = self.form_data.get("columns") or []
for column_name in groupby + columns:
column = self.datasource.get_column(column_name)
if column and column.is_temporal:
ts = df[column_name].apply(self._format_datetime)
df[column_name] = ts
if self.form_data.get("transpose_pivot"):
groupby, columns = columns, groupby
df = df.pivot_table(
index=groupby,
columns=columns,
values=metrics,
aggfunc=aggfuncs,
margins=self.form_data.get("pivot_margins"),
)
# Re-order the columns adhering to the metric ordering.
df = df[metrics]
# Display metrics side by side with each column
if self.form_data.get("combine_metric"):
df = df.stack(0).unstack()
return dict(
columns=list(df.columns),
html=df.to_html(
na_rep="null",
classes=(
"dataframe table table-striped table-bordered "
"table-condensed table-hover"
).split(" "),
),
)
class TreemapViz(BaseViz):
"""Tree map visualisation for hierarchical data."""
viz_type = "treemap"
verbose_name = _("Treemap")
credits = '<a href="https://d3js.org">d3.js</a>'
is_timeseries = False
def _nest(self, metric: str, df: pd.DataFrame) -> List[Dict[str, Any]]:
nlevels = df.index.nlevels
if nlevels == 1:
result = [{"name": n, "value": v} for n, v in zip(df.index, df[metric])]
else:
result = [
{"name": l, "children": self._nest(metric, df.loc[l])}
for l in df.index.levels[0]
]
return result
def get_data(self, df: pd.DataFrame) -> VizData:
if df.empty:
return None
df = df.set_index(self.form_data.get("groupby"))
chart_data = [
{"name": metric, "children": self._nest(metric, df)}
for metric in df.columns
]
return chart_data
class CalHeatmapViz(BaseViz):
"""Calendar heatmap."""
viz_type = "cal_heatmap"
verbose_name = _("Calendar Heatmap")
credits = "<a href=https://github.com/wa0x6e/cal-heatmap>cal-heatmap</a>"
is_timeseries = True