Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-749] Correct usages of CutSubgraph in 3 control flow operators #12078

Merged
merged 6 commits into from
Aug 10, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 16 additions & 12 deletions python/mxnet/symbol/contrib.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ def _cut_subgraph(subg):
# This construct a subgraph for given output nodes.
# If an output node is one of the input nodes, we call identity to make sure
# that outputs nodes are different from input nodes.
def _construct_subgraph(sym_out, sym_states):
def _construct_subgraph(sym_out, sym_states, name):
sym_out = _as_list(sym_out)
sym_states = _as_list(sym_states)
all_outputs = []
Expand All @@ -137,18 +137,16 @@ def _construct_subgraph(sym_out, sym_states):

flat_out = []
all_input_names = g.list_inputs()
output_names = [o.name for o in sym_out]
output_names = {o.name for o in sym_out}
for o in sym_out:
if o.name in all_input_names:
if o.name in all_input_names or o.list_attr().get("__subgraph_name__", "") != name:
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what happens if o doesn't have __subgraph_name__?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@zheng-da dict.get(key, defaultvalue) will return you defaultvalue if key doesn't exist

flat_out.append(symbol.op.identity(o))
else:
flat_out.append(o)

for s in sym_states:
if s.name in all_input_names or s.name in output_names:
# There is a problem if the outputs are the same as the inputs
# or the first output. By calling identity, we can make sure that
# all symbols will refer to different NDArrays.
if s.name in all_input_names or s.name in output_names or \
s.list_attr().get("__subgraph_name__", "") != name:
flat_out.append(symbol.op.identity(s))
else:
flat_out.append(s)
Expand Down Expand Up @@ -256,7 +254,7 @@ def check_data(inputs, in_type, msg):
num_out_data = len(sym_out)
num_states = len(sym_states)
num_outputs = num_out_data + num_states
g = _construct_subgraph(sym_out, sym_states)
g = _construct_subgraph(sym_out, sym_states, name)

input_syms = _get_graph_inputs(g)
cut_syms = _cut_subgraph(g)
Expand Down Expand Up @@ -469,9 +467,12 @@ def _create_subgraph(graph_vars, graph_func, subgraph_name):
num_outputs = len(outputs) + len(final_state)
# nnvm cut-graph does not allow inputs and outputs overlap
# so we calculate the name of inputs, and copy outputs once it overlaps with inputs
all_input_names = symbol.Group(outputs + final_state).list_inputs()
make_identity = lambda x: symbol.op.identity(x) if x.name in all_input_names else x
# group all outputs of graph_func
all_input_names = symbol.Group(outputs + final_state).list_inputs()
in_input = lambda x: x.name in all_input_names
in_graph = lambda x: x.list_attr().get("__subgraph_name__", "") == subgraph_name
make_identity = lambda x: symbol.op.identity(x) if in_input(x) or not in_graph(x) \
else x
graph = symbol.Group(list(map(make_identity, outputs + final_state)))
return graph, num_out_data, num_outputs

Expand Down Expand Up @@ -627,9 +628,12 @@ def _create_subgraph(graph_vars, graph_func, subgraph_name):
num_outputs = len(outputs)
# nnvm cut-graph does not allow inputs and outputs overlap
# so we calculate the name of inputs, and copy outputs once it overlaps with inputs
all_input_names = symbol.Group(outputs).list_inputs()
make_identity = lambda x: symbol.op.identity(x) if x.name in all_input_names else x
# group all outputs of graph_func
all_input_names = symbol.Group(outputs).list_inputs()
in_input = lambda x: x.name in all_input_names
in_graph = lambda x: x.list_attr().get("__subgraph_name__", "") == subgraph_name
make_identity = lambda x: symbol.op.identity(x) if in_input(x) or not in_graph(x) \
else x
graph = symbol.Group(list(map(make_identity, outputs)))
return graph, num_outputs

Expand Down
6 changes: 3 additions & 3 deletions src/c_api/c_api_symbolic.cc
Original file line number Diff line number Diff line change
Expand Up @@ -372,13 +372,13 @@ int MXSymbolCutSubgraph(SymbolHandle sym, SymbolHandle **input_symbols,
// a subgraph.
API_BEGIN();
nnvm::Symbol *s = static_cast<nnvm::Symbol*>(sym);
std::string subg_attr = "__subgraph_name__";
const std::string subg_attr = "__subgraph_name__";
auto out_node = s->outputs[0].node;
auto it = out_node->attrs.dict.find(subg_attr);
if (it != out_node->attrs.dict.end()) {
std::string subg_name = it->second;
const std::string &subg_name = it->second;
std::vector<nnvm::NodeEntry *> input_entries;
DFSVisit(s->outputs, [subg_attr, subg_name, &input_entries]
DFSVisit(s->outputs, [&subg_attr, &subg_name, &input_entries]
(nnvm::NodePtr n) {
// If the node itself isn't in the subgraph, we ignore it.
auto it = n->attrs.dict.find(subg_attr);
Expand Down
3 changes: 3 additions & 0 deletions src/operator/control_flow.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1225,6 +1225,9 @@ static bool BackwardCondStorageType(const nnvm::NodeAttrs& attrs,
CHECK(sync_in_in(input_locs, out_attrs, &subg_out_attrs, is_udf));
return ret;
};
for (const dim_t &cond_in : params.cond_input_locs) {
(*out_attrs)[cond_in] = kDefaultStorage;
}
bool succ_0 = sub_pass(attrs.subgraphs[1], params.then_input_locs);
bool succ_1 = sub_pass(attrs.subgraphs[2], params.else_input_locs);
return succ_0 && succ_1;
Expand Down
101 changes: 101 additions & 0 deletions tests/python/unittest/test_contrib_control_flow.py
Original file line number Diff line number Diff line change
Expand Up @@ -1664,6 +1664,107 @@ def test_foreach_rnn():
check_foreach_rnn(cell_type, num_states)


@with_seed()
def test_cut_subgraph_foreach():
class TestLayer(gluon.HybridBlock):
def __init__(self, prefix=None, params=None):
super(TestLayer, self).__init__(prefix=prefix, params=params)

def hybrid_forward(self, F, inputs, states):
def step1(data, states):
return data + 1, states
out1, states1 = F.contrib.foreach(step1, inputs, states)
out2, states2 = F.contrib.foreach(step1, out1, states)
def step2(data, states):
return data + states[0], states1
out, states = F.contrib.foreach(step2, out2, states)
return out

data = mx.nd.normal(loc=0, scale=1, shape=(5, 10))
states = mx.nd.normal(loc=0, scale=1, shape=(10))
layer = TestLayer()
layer.initialize(ctx=default_context())
res1 = layer(data, [states])

with mx.autograd.record():
res1 = layer(data, [states])

layer = TestLayer()
layer.initialize(ctx=default_context())
layer.hybridize()
res2 = layer(data, [states])

with mx.autograd.record():
res2 = layer(data, [states])
assert_almost_equal(res1.asnumpy(), res2.asnumpy(), rtol=0.001, atol=0.0001)


@with_seed()
def test_cut_subgraph_while_loop():
class TestLayer(gluon.HybridBlock):
def __init__(self, prefix=None, params=None):
super(TestLayer, self).__init__(prefix=prefix, params=params)
def hybrid_forward(self, F, data):
out1, data1 = F.contrib.while_loop(
cond=lambda i: i <= 5,
func=lambda i: (None, (i + 1, )),
loop_vars=(data, ),
max_iterations=10,
)
out2, data2 = F.contrib.while_loop(
cond=lambda i: data1[0],
func=lambda i: (None, (i + 1, )),
loop_vars=data1[0],
max_iterations=10,
)
return data2[0]
data = mx.nd.normal(loc=0, scale=1, shape=(1, ))
layer = TestLayer()
layer.initialize(ctx=default_context())
res1 = layer(data)
with mx.autograd.record():
res1 = layer(data)
layer = TestLayer()
layer.initialize(ctx=default_context())
layer.hybridize()
res2 = layer(data)
with mx.autograd.record():
res2 = layer(data)
assert_almost_equal(res1.asnumpy(), res2.asnumpy(), rtol=0.001, atol=0.0001)


@with_seed()
def test_cut_subgraph_cond():
class TestLayer(gluon.HybridBlock):
def __init__(self, prefix=None, params=None):
super(TestLayer, self).__init__(prefix=prefix, params=params)
def hybrid_forward(self, F, data):
(data1, ) = F.contrib.cond(
data > 0.5,
then_func=lambda: data * 2,
else_func=lambda: data * 3,
)
(data2, ) = F.contrib.cond(
data1 > 0.5,
then_func=lambda: data1 * 2,
else_func=lambda: data1 * 3,
)
return data2
data = mx.nd.normal(loc=0, scale=1, shape=(1, ))
layer = TestLayer()
layer.initialize(ctx=default_context())
res1 = layer(data)
with mx.autograd.record():
res1 = layer(data)
layer = TestLayer()
layer.initialize(ctx=default_context())
layer.hybridize()
res2 = layer(data)
with mx.autograd.record():
res2 = layer(data)
assert_almost_equal(res1.asnumpy(), res2.asnumpy(), rtol=0.001, atol=0.0001)


if __name__ == '__main__':
import nose
nose.runmodule()