Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add option to load big/wide tables #13448

Merged
merged 4 commits into from
Mar 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 14 additions & 3 deletions superset/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,10 @@ def version(verbose: bool) -> None:


def load_examples_run(
load_test_data: bool, only_metadata: bool = False, force: bool = False
load_test_data: bool = False,
load_big_data: bool = False,
only_metadata: bool = False,
force: bool = False,
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is a bit of a nit, but for consistency, do you think it's better to have default False values on all of these or allow nulls?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In this case click is adding the default values when parsing the CLI options, but I'll add some default values to the function signature as well.

) -> None:
if only_metadata:
print("Loading examples metadata")
Expand Down Expand Up @@ -167,24 +170,32 @@ def load_examples_run(
print("Loading DECK.gl demo")
examples.load_deck_dash()

if load_big_data:
betodealmeida marked this conversation as resolved.
Show resolved Hide resolved
print("Loading big synthetic data for tests")
examples.load_big_data()

# load examples that are stored as YAML config files
examples.load_from_configs(force, load_test_data)


@with_appcontext
@superset.command()
@click.option("--load-test-data", "-t", is_flag=True, help="Load additional test data")
@click.option("--load-big-data", "-b", is_flag=True, help="Load additional big data")
@click.option(
"--only-metadata", "-m", is_flag=True, help="Only load metadata, skip actual data"
)
@click.option(
"--force", "-f", is_flag=True, help="Force load data even if table already exists"
)
def load_examples(
load_test_data: bool, only_metadata: bool = False, force: bool = False
load_test_data: bool,
load_big_data: bool,
only_metadata: bool = False,
force: bool = False,
) -> None:
"""Loads a set of Slices and Dashboards and a supporting dataset """
load_examples_run(load_test_data, only_metadata, force)
load_examples_run(load_test_data, load_big_data, only_metadata, force)


@with_appcontext
Expand Down
1 change: 1 addition & 0 deletions superset/examples/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
# specific language governing permissions and limitations
# under the License.
from .bart_lines import load_bart_lines
from .big_data import load_big_data
from .birth_names import load_birth_names
from .country_map import load_country_map_data
from .css_templates import load_css_templates
Expand Down
49 changes: 49 additions & 0 deletions superset/examples/big_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import List

import sqlalchemy.sql.sqltypes

from superset.utils.data import add_data, ColumnInfo

COLUMN_TYPES = [
sqlalchemy.sql.sqltypes.INTEGER(),
sqlalchemy.sql.sqltypes.VARCHAR(length=255),
sqlalchemy.sql.sqltypes.TEXT(),
sqlalchemy.sql.sqltypes.BOOLEAN(),
sqlalchemy.sql.sqltypes.FLOAT(),
sqlalchemy.sql.sqltypes.DATE(),
sqlalchemy.sql.sqltypes.TIME(),
sqlalchemy.sql.sqltypes.DATETIME(),
]


def load_big_data() -> None:
# create table with 100 columns to test SQL Lab
columns: List[ColumnInfo] = []
for i in range(100):
betodealmeida marked this conversation as resolved.
Show resolved Hide resolved
column: ColumnInfo = {
"name": f"col{i}",
"type": COLUMN_TYPES[i % len(COLUMN_TYPES)],
"nullable": False,
"default": None,
"autoincrement": "auto",
"primary_key": 1 if i == 0 else 0,
}
columns.append(column)

add_data(columns=columns, num_rows=1000, table_name="wide_table")
165 changes: 165 additions & 0 deletions superset/utils/data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,165 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import random
import string
import sys
from datetime import date, datetime, time, timedelta
from typing import Any, Callable, cast, Dict, List, Optional

import sqlalchemy.sql.sqltypes
from sqlalchemy import Column, inspect, MetaData, Table
from sqlalchemy.sql.visitors import VisitableType
from typing_extensions import TypedDict

ColumnInfo = TypedDict(
"ColumnInfo",
{
"name": str,
"type": VisitableType,
"nullable": bool,
"default": Optional[Any],
"autoincrement": str,
"primary_key": int,
},
)


example_column = {
"name": "id",
"type": sqlalchemy.sql.sqltypes.INTEGER(),
"nullable": False,
"default": None,
"autoincrement": "auto",
"primary_key": 1,
}


MINIMUM_DATE = date(1900, 1, 1)
MAXIMUM_DATE = date.today()
days_range = (MAXIMUM_DATE - MINIMUM_DATE).days


def get_type_generator(sqltype: sqlalchemy.sql.sqltypes) -> Callable[[], Any]:
if isinstance(sqltype, sqlalchemy.sql.sqltypes.INTEGER):
return lambda: random.randrange(2147483647)

if isinstance(sqltype, sqlalchemy.sql.sqltypes.BIGINT):
return lambda: random.randrange(sys.maxsize)

if isinstance(sqltype, sqlalchemy.sql.sqltypes.VARCHAR):
length = random.randrange(sqltype.length or 255)
return lambda: "".join(random.choices(string.printable, k=length))

if isinstance(sqltype, sqlalchemy.sql.sqltypes.TEXT):
length = random.randrange(65535)
betodealmeida marked this conversation as resolved.
Show resolved Hide resolved
# "practicality beats purity"
betodealmeida marked this conversation as resolved.
Show resolved Hide resolved
length = max(length, 2048)
return lambda: "".join(random.choices(string.printable, k=length))

if isinstance(sqltype, sqlalchemy.sql.sqltypes.BOOLEAN):
return lambda: random.choice([True, False])

if isinstance(
sqltype, (sqlalchemy.sql.sqltypes.FLOAT, sqlalchemy.sql.sqltypes.REAL)
):
return lambda: random.uniform(-sys.maxsize, sys.maxsize)

if isinstance(sqltype, sqlalchemy.sql.sqltypes.DATE):
return lambda: MINIMUM_DATE + timedelta(days=random.randrange(days_range))

if isinstance(sqltype, sqlalchemy.sql.sqltypes.TIME):
return lambda: time(
random.randrange(24), random.randrange(60), random.randrange(60),
)

if isinstance(
sqltype, (sqlalchemy.sql.sqltypes.TIMESTAMP, sqlalchemy.sql.sqltypes.DATETIME)
):
return lambda: datetime.fromordinal(MINIMUM_DATE.toordinal()) + timedelta(
seconds=random.randrange(days_range * 86400)
)

raise Exception(f"Unknown type {sqltype}. Please add it to `get_type_generator`.")


def add_data(
columns: Optional[List[ColumnInfo]],
num_rows: int,
table_name: str,
append: bool = True,
) -> None:
"""
Generate synthetic data for testing migrations and features.

If the table already exists `columns` can be `None`.

:param Optional[List[ColumnInfo]] columns: list of column names and types to create
:param int run_nows: how many rows to generate and insert
:param str table_name: name of table, will be created if it doesn't exist
:param bool append: if the table already exists, append data or replace?
"""
from superset.utils.core import get_example_database

database = get_example_database()
table_exists = database.has_table_by_name(table_name)
engine = database.get_sqla_engine()

if columns is None:
if not table_exists:
raise Exception(
f"The table {table_name} does not exist. To create it you need to "
"pass a list of column names and types."
)

inspector = inspect(engine)
columns = inspector.get_columns(table_name)

# create table if needed
column_objects = get_column_objects(columns)
metadata = MetaData()
table = Table(table_name, metadata, *column_objects)
metadata.create_all(engine)

if not append:
# pylint: disable=no-value-for-parameter (sqlalchemy/issues/4656)
engine.execute(table.delete())

data = generate_data(columns, num_rows)
# pylint: disable=no-value-for-parameter (sqlalchemy/issues/4656)
engine.execute(table.insert(), data)


def get_column_objects(columns: List[ColumnInfo]) -> List[Column]:
out = []
for column in columns:
kwargs = cast(Dict[str, Any], column.copy())
kwargs["type_"] = kwargs.pop("type")
out.append(Column(**kwargs))
return out


def generate_data(columns: List[ColumnInfo], num_rows: int) -> List[Dict[str, Any]]:
keys = [column["name"] for column in columns]
return [
dict(zip(keys, row))
for row in zip(*[generate_column_data(column, num_rows) for column in columns])
]


def generate_column_data(column: ColumnInfo, num_rows: int) -> List[Any]:
func = get_type_generator(column["type"])
return [func() for _ in range(num_rows)]