-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
threading_backend.cc
270 lines (249 loc) · 9.05 KB
/
threading_backend.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file threading_backend.cc
* \brief Native threading backend
*/
#include <tvm/runtime/threading_backend.h>
#include <tvm/support/logging.h>
#include <algorithm>
#include <thread>
#if defined(__linux__) || defined(__ANDROID__)
#include <fstream>
#include <sstream>
#else
#endif
#if defined(__linux__)
#include <sched.h>
#endif
#if defined(__hexagon__)
#include <dlfcn.h>
#endif
namespace tvm {
namespace runtime {
namespace threading {
class ThreadGroup::Impl {
public:
Impl(int num_workers, std::function<void(int)> worker_callback, bool exclude_worker0)
: num_workers_(num_workers) {
ICHECK_GE(num_workers, 1) << "Requested a non-positive number of worker threads.";
for (int i = exclude_worker0; i < num_workers_; ++i) {
threads_.emplace_back([worker_callback, i] { worker_callback(i); });
}
InitSortedOrder();
}
~Impl() { Join(); }
void Join() {
for (auto& t : threads_) {
if (t.joinable()) t.join();
}
}
int Configure(AffinityMode mode, int nthreads, bool exclude_worker0) {
int num_workers_used = 0;
if (mode == kLittle) {
num_workers_used = little_count_;
} else if (mode == kBig) {
num_workers_used = big_count_;
} else {
// use default
num_workers_used = threading::MaxConcurrency();
}
// if a specific number was given, use that
if (nthreads) {
num_workers_used = nthreads;
}
// if MaxConcurrency restricted the number of workers (e.g., due to
// hyperthreading), respect the restriction. On CPUs with N logical cores
// and N/2 physical cores this will set affinity to the first N/2 logical
// ones.
num_workers_used = std::min(num_workers_, num_workers_used);
const char* val = getenv("TVM_BIND_THREADS");
if (val == nullptr || atoi(val) == 1) {
// Do not set affinity if there are more workers than found cores
if (sorted_order_.size() >= static_cast<unsigned int>(num_workers_)) {
SetAffinity(exclude_worker0, mode == kLittle);
} else {
LOG(WARNING) << "The thread affinity cannot be set when the number of workers"
<< "is larger than the number of available cores in the system.";
}
}
return num_workers_used;
}
private:
// bind worker threads to disjoint cores
// if worker 0 is offloaded to main, i.e. exclude_worker0 is true,
// the main thread is bound to core 0.
void SetAffinity(bool exclude_worker0, bool reverse = false) {
#if defined(__ANDROID__)
#ifndef CPU_SET
#define CPU_SETSIZE 1024
#define __NCPUBITS (8 * sizeof(uint64_t))
typedef struct {
uint64_t __bits[CPU_SETSIZE / __NCPUBITS];
} cpu_set_t;
#define CPU_SET(cpu, cpusetp) \
((cpusetp)->__bits[(cpu) / __NCPUBITS] |= (1UL << ((cpu) % __NCPUBITS)))
#define CPU_ZERO(cpusetp) memset((cpusetp), 0, sizeof(cpu_set_t))
#endif
#endif
#if defined(__linux__) || defined(__ANDROID__)
ICHECK_GE(sorted_order_.size(), num_workers_);
for (unsigned i = 0; i < threads_.size(); ++i) {
unsigned core_id;
if (reverse) {
core_id = sorted_order_[sorted_order_.size() - (i + exclude_worker0) - 1];
} else {
core_id = sorted_order_[i + exclude_worker0];
}
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(core_id, &cpuset);
#if defined(__ANDROID__)
sched_setaffinity(threads_[i].native_handle(), sizeof(cpu_set_t), &cpuset);
#else
pthread_setaffinity_np(threads_[i].native_handle(), sizeof(cpu_set_t), &cpuset);
#endif
}
if (exclude_worker0) { // main thread run task
// Master thread will have free migration on needed cores.
// Typically, the OS will schedule the main thread to run at core 0,
// which is idle, when other workers are running.
// See the comment inside SetMasterThreadFullCpuAffinity function to get more detail.
SetMasterThreadFullCpuAffinity(reverse);
}
#endif
}
void SetMasterThreadFullCpuAffinity(bool reverse) {
#if defined(__linux__) || defined(__ANDROID__)
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
// For example, we have 2xA72 + 4xA53 (id is 0 - 5, 4, 5 is A72 big core)
// And we use config_threadpool API to set we will only use 4xA53.
// The sorted_order will be [4, 5, 0, 1, 2, 3].
// When to call this API, we have spawn threads on little cores for other workers
// in SetAffinity function. And for tvm main thread, it should also run on little cores,
// not big cores (4, 5).
// Note: this works well on x86 too. Because x86 doesn't have BIG.LITTLE,
// our implementation will use kBig mode by default and will let main thread
// run on intended cores.
if (reverse) {
for (int i = 0; i < little_count_; ++i) {
CPU_SET(sorted_order_[sorted_order_.size() - i - 1], &cpuset);
}
} else {
int num_cpu_workers = std::min(MaxConcurrency(), big_count_);
for (int i = 0; i < num_cpu_workers; ++i) {
CPU_SET(sorted_order_[i], &cpuset);
}
}
#if defined(__ANDROID__)
sched_setaffinity(pthread_self(), sizeof(cpu_set_t), &cpuset);
#else
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset);
#endif
#endif
}
void InitSortedOrder() {
unsigned int threads = std::thread::hardware_concurrency();
#if defined(__hexagon__)
// With unsigned PDs, getting the number of available hardware threads
// is not supported in earlier versions of QuRT. In such cases assume 4.
if (threads == 0) threads = 4;
#endif
std::vector<std::pair<unsigned int, int64_t> > max_freqs;
for (unsigned int i = 0; i < threads; ++i) {
int64_t cur_freq = 0;
#if defined(__linux__) || defined(__ANDROID__)
std::ostringstream filepath;
filepath << "/sys/devices/system/cpu/cpu" << i << "/cpufreq/cpuinfo_max_freq";
std::ifstream ifs(filepath.str());
if (!ifs.fail()) {
if (!(ifs >> cur_freq)) {
cur_freq = -1;
}
ifs.close();
}
#endif
max_freqs.push_back(std::make_pair(i, cur_freq));
}
auto fcmpbyfreq = [](const std::pair<unsigned int, int64_t>& a,
const std::pair<unsigned int, int64_t>& b) {
return a.second == b.second ? a.first < b.first : a.second > b.second;
};
std::sort(max_freqs.begin(), max_freqs.end(), fcmpbyfreq);
int64_t big_freq = max_freqs.begin()->second;
int64_t little_freq = max_freqs.rbegin()->second;
for (auto it = max_freqs.begin(); it != max_freqs.end(); it++) {
sorted_order_.push_back(it->first);
if (big_freq == it->second) {
big_count_++;
}
if (big_freq != little_freq && little_freq == it->second) {
little_count_++;
}
}
if (big_count_ + little_count_ != static_cast<int>(sorted_order_.size())) {
LOG(WARNING) << "more than two frequencies detected!";
}
}
int num_workers_;
std::vector<std::thread> threads_;
std::vector<unsigned int> sorted_order_;
int big_count_ = 0;
int little_count_ = 0;
};
ThreadGroup::ThreadGroup(int num_workers, std::function<void(int)> worker_callback,
bool exclude_worker0)
: impl_(new ThreadGroup::Impl(num_workers, worker_callback, exclude_worker0)) {}
ThreadGroup::~ThreadGroup() { delete impl_; }
void ThreadGroup::Join() { impl_->Join(); }
int ThreadGroup::Configure(AffinityMode mode, int nthreads, bool exclude_worker0) {
return impl_->Configure(mode, nthreads, exclude_worker0);
}
void Yield() { std::this_thread::yield(); }
int MaxConcurrency() {
int max_concurrency = 1;
const char* val = getenv("TVM_NUM_THREADS");
if (val == nullptr) {
val = getenv("OMP_NUM_THREADS");
}
if (val != nullptr) {
max_concurrency = atoi(val);
} else {
max_concurrency = std::thread::hardware_concurrency();
#if defined(_M_X64) || defined(__x86_64__)
max_concurrency /= 2; // ignore hyper-threading
#elif defined(__hexagon__)
// With unsigned PDs, getting the number of available hardware threads
// is not supported in earlier versions of QuRT. In such cases assume 4.
// If running on simulator, set max_concurrency to 1.
if (max_concurrency == 0) {
if (dlsym(RTLD_DEFAULT, "running_in_sim_dev_17bc90206f6cf5a7")) {
max_concurrency = 1;
} else {
max_concurrency = 4;
}
}
#endif
}
return std::max(max_concurrency, 1);
}
} // namespace threading
} // namespace runtime
} // namespace tvm