Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CMSIS-NN] Moved TFLite model making to common area #10939

Merged
merged 5 commits into from
Apr 28, 2022
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
152 changes: 152 additions & 0 deletions python/tvm/relay/testing/tflite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Common utilities for creating TFLite models"""
from distutils.version import LooseVersion
import numpy as np
import pytest
import tvm

pytest.importorskip("tflite")
pytest.importorskip("tensorflow")
import tflite.Model # pylint: disable=wrong-import-position
import tensorflow as tf # pylint: disable=wrong-import-position


class TFLiteModel:
"""Creates TFLite Model and facilitates reference data generation"""

def __init__(self, dtype):
self.serial_model = None # This is what TFLite convert() provides
self.dtype = dtype # This is the dtype of graph inputs
self.shape_dict = {}
self.dtype_dict = {}

@tf.function
def conv2d_single_function(self, ifm_tensor, args):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I feel like creation of this function should be part of the test itself so its clear what's being tested, rather than hidden away in common testing utilities

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yeah, I was thinking about it too. But wanted to wait until I had seen more cases that might be potential users of it. The problem with exposing this function is that the end user could chain this with other functions and would expect create_model() to work, but it might not because of the tf.function pragmas.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As discussed offline, we will keep single layer creation as part of the infra to avoid duplication of this bit across multiple tests. If necessary, to include complex cases, user can write their own @tf.function and still create a model using this infra.

"""Returns TFLite Conv2d layer"""
assert len(args) == 6, "Conv2D needs (ifm_shape, kernel_shape, strides, padding, dilation)"
_, kernel_shape, strides, padding, dilation, activation = args
op = tf.nn.conv2d(
ifm_tensor,
filters=tf.constant(
np.random.uniform(size=[kernel_shape[0], kernel_shape[1], 3, 3]),
dtype=tf.float32,
),
strides=[1, strides[0], strides[1], 1],
padding=padding,
dilations=dilation,
)
if activation == "RELU":
op = tf.nn.relu(op)
elif activation == "NONE":
pass
else:
assert False, "Unsupported activation {}".format(activation)
return op

def create_tflite_model(self, op_type, *args):
"""Returns TFLite serial graph, Relay module, Relay params based on op_type"""
concrete_func = None
input_shape = None
if op_type == "conv2d_single":
input_shape = args[0]
ifm_tensor = tf.TensorSpec(input_shape, dtype=tf.float32, name="input")
concrete_func = self.conv2d_single_function.get_concrete_function(ifm_tensor, args)
else:
assert False, "Unsupported op_type {}".format(op_type)

def representative_dataset():
for _ in range(100):
data = np.random.rand(*tuple(input_shape))
ashutosh-arm marked this conversation as resolved.
Show resolved Hide resolved
yield [data.astype(np.float32)]

converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
self.serial_model = converter.convert()
self.shape_dict = {"input": input_shape}
self.dtype_dict = {"input": self.dtype}

def convert_to_relay(self):
"""Converts TFLite serialized graph into Relay"""
assert self.serial_model is not None, "TFLite model is empty!"

tflite_model = tflite.Model.Model.GetRootAsModel(self.serial_model, 0)
relay_module, relay_params = tvm.relay.frontend.from_tflite(
tflite_model, self.shape_dict, self.dtype_dict
)
return relay_module, relay_params

def generate_randomized_input_data(self, seed, shape, dtype):
"""Generates randomized input numpy arrays based on shape and dtype."""
random_state = np.random.RandomState(seed)
random_data = None
if dtype == np.float32:
random_data = random_state.uniform(-1, 1, size).astype(dtype)
else:
low = np.iinfo(dtype).min
high = np.iinfo(dtype).max + 1
random_data = random_state.randint(low, high, shape, dtype)
return random_data

# pylint: disable=import-outside-toplevel
def generate_reference_data(self):
"""
This method uses TFLite reference kernels to generate reference output.
It returns randomized inputs and reference outputs.
"""
assert self.serial_model is not None, "TFLite model was not created."

output_tolerance = None
if tf.__version__ < LooseVersion("2.5.0"):
output_tolerance = 1
interpreter = tf.lite.Interpreter(model_content=self.serial_model)
else:
output_tolerance = 0
interpreter = tf.lite.Interpreter(
model_content=self.serial_model,
experimental_op_resolver_type=tf.lite.experimental.OpResolverType.BUILTIN_REF,
experimental_preserve_all_tensors=False,
)

interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

# Generate predictable randomized input
seed = 0
input_data = {}
for input_detail in input_details:
input_values = self.generate_randomized_input_data(
seed, input_detail["shape"], input_detail["dtype"]
)
interpreter.set_tensor(input_detail["index"], input_values)
input_data.update({input_detail["name"]: input_values})

interpreter.invoke()

# Obtain the expected output from interpreter
expected_output_data = {}
for output_detail in output_details:
expected_output_data.update(
{output_detail["name"]: interpreter.get_tensor(output_detail["index"])}
)

return input_data, expected_output_data, output_tolerance
18 changes: 10 additions & 8 deletions tests/python/contrib/test_cmsisnn/test_conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,14 +35,12 @@
from utils import (
skip_if_no_reference_system,
make_module,
create_conv2d_tflite_relay_models,
get_range_for_dtype_str,
get_same_padding,
get_conv2d_qnn_params,
make_qnn_relu,
assert_partitioned_function,
assert_no_external_function,
generate_ref_data_tflite,
)


Expand Down Expand Up @@ -314,25 +312,29 @@ def test_conv2d_int8_tflite(ifm_shape, kernel_shape, strides, dilation, padding,
interface_api = "c"
use_unpacked_api = True
test_runner = AOT_USMP_CORSTONE300_RUNNER

dtype = "int8"
tflite_model, relay_mod, params = create_conv2d_tflite_relay_models(
ifm_shape, kernel_shape, strides, dilation, padding, activation, dtype

from tvm.relay.testing.tflite import TFLiteModel

tfl_model = TFLiteModel(dtype)
tfl_model.create_tflite_model(
"conv2d_single", ifm_shape, kernel_shape, strides, padding, dilation, activation
)
relay_mod, relay_params = tfl_model.convert_to_relay()

cmsisnn_mod = cmsisnn.partition_for_cmsisnn(relay_mod, params)
cmsisnn_mod = cmsisnn.partition_for_cmsisnn(relay_mod, relay_params)

# validate pattern matching
assert_partitioned_function(relay_mod, cmsisnn_mod)

# validate CMSIS-NN output against TFLite output
input_map, output_map, output_tolerance = generate_ref_data_tflite(tflite_model)
ashutosh-arm marked this conversation as resolved.
Show resolved Hide resolved
input_map, output_map, output_tolerance = tfl_model.generate_reference_data()
compile_and_run(
AOTTestModel(
module=cmsisnn_mod,
inputs=input_map,
outputs=output_map,
params=params,
params=relay_params,
output_tolerance=output_tolerance,
),
test_runner,
Expand Down