i

FACELOCK
ALGORITHM

APARNA

PROBLEM STATEMENT

The security of applications in mobile phones or websites is always a major issue
to ensure the security and privacy, we designed a Machine Learning Algorithm
which will only unlock the application or website when it will scan your face.

OBJECTIVE AND SCOPE

: \

The objective of the project
IS to provide user an

algorithm which will detect

the face of the user and
unlock the applications or
@ Wwebsites according to that.

~

It will first take the training
data as an input from the
camera of the device and

then will train the model
from the input and will
detect the face according to
that training of the model

SOFTWARE USED

Python :- We have used python latest version “ 3.8.5” in the project.

OpenCV :- OpenCV (OPEN SOUCE COMPUTER VISION) Is an open-source BSD-
licensed library that includes several hundreds of computer vision algorithms. We
will use many methods of opencyv in this project.

Anaconda :- Anaconda Enterprise is an enterprise-ready, secure, and scalable
data science platform that empowers teams to govern data science assets,
collaborate, and deploy data science projects.

HARDWARE
USED

A WINDOWS SYSTEM WITH
WEBCAM IN IT.

METHODOLOGY

WORKFLOW OF MODULE 1

Capture until 1000
Images

Store plcs to glven
i B

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 38

1 feature 10 features | | 20 features 30 features 50 features 600 features

q q‘ " ; q
uld be a uld be a
face face

Could be a Co Could be a
face

e It is a face

This is basically a machine learning based
ABOUT approach where a cascade function is trained
from a lot of images both positive and negative.

HARCASCADE CLASSIFIER Based on the training it is then used to detect the

objects in the other images.

USECASES OF
HARCASCADE
CLASSIFIERS

1. FACE DETECTION
using haarcascade frontalface default.xml

2. FACE AND EYE DETECTION
using haarcascade _eye.xml

3. VEHICLE DETECTION FROM STREAMING
VIDEO using haarcascade_car.xml

4. PEDESTRIAN DETECTION FROM
STREAMING VIDEO
using haarcascade fullbody.xml

HARCASCADE
FRONTAL FACE
CLASSIFIER

It is used to detect only the front
face of the user and eliminates
all the background details

‘f?'f ;

i T

o.® o .
Y -'~"'4

METHODOLOGY

WORKFLOW OF MODULE 2

Define path
and read
images

DEFINE
Haarcascade frontal

face classifler

[|mu=-..|mmmmj

Crop and comvert
image color to B/w

PREDICT

IF confidence>BS
Then "Unlock™
glse “Lock”

mad? flow of work diagram

ABOUT LBPH MODEL

Local Binary Pattern (LBP) is a simple yet very efficient texture operator which
labels the pixels of an image by thresholding the neighborhood of each pixel and
considers the result as a binary number.

It was first described in 1994 (LBP) and has since been found to be a powerful
feature for texture classification. It has further been determined that when LBP is
combined with histograms of oriented gradients (HOG) descriptor, it improves the
detection performance considerably on some datasets.

PARAMETERS
OF LBPH
ALGORITHM

Radius: the radius is used to build the circular local
binary pattern and represents the radius around the
central pixel. It is usually set to 1.

Neighbors: the number of sample points to build the
circular local binary pattern. Keep in mind: the more
sample points you include, the higher the computational
cost. It is usually set to 8.

Grid X: the number of cells in the horizontal direction.
The more cells, the finer the grid, the higher the
dimensionality of the resulting feature vector. It is usually
set to 8.

Grid Y: the number of cells in the vertical direction. The
more cells, the finer the grid, the higher the dimensionality
of the resulting feature vector. It is usually set to 8.

TRAINING THE LBPH ALGORITHM

First, we need to train the algorithm. To do so, we need to use a dataset with the
facial images of the people we want to recognize. We need to also set an ID (it may
be a number or the name of the person) for each image, so the algorithm will use
this information to recognize an input image and give you an output. Images of the
same person must have the same ID.

APPLYING
THE LBPH

OPERATION

The first computational step of - 200 50 | 50 11o]o 150 | 90 | 80

the LBPH is to create an

. L 5 |90 |100]>] 0 1 |- 30 | 141
intermediate image that

describes the original image in a > ' 160 | 70 | 210 1 o]+

better way, by highlighting the
facial characteristics. To do so,
the algorithm uses a concept of a
sliding window, based on the
parameters radius and neighbor
S.

3x3 pixels Threshold Binary Decimal
90 10001101 141

APPLYING LBPH---CONTD--------

e -
=

-
S z- e
2 R 5 e e 1 ﬁ
4
N » ~ ;\
¥
05 1 2 -l
I AN allisll ¢ ¢ o il n ™ |
N v —_
. = N
X >) :)
\ b “‘
3

“
|

Original Image LBP Result Regions/Grids Histogram of each region Concatenated Histogram
(Grid X - Grid Y)

Now, using the image generated in the last
step, we can use the Grid X and Grid

EXTRACTI NG Y parameters to divide the image into multiple

HISTOGRAMS IN LBPH | grids

FACE
RECOGNITION

BY LBEPH

1. So to find the image that matches the
Input image we just need to compare
two histograms and return the image
with the closest histogram.

2. We can use various approaches to
compare the histograms (calculate the
distance between two histograms), for
example: euclidean distance, chi-
square, absolute value, etc.

3. So the algorithm output is the ID from
the image with the closest histogram.
The algorithm should also return the
calculated distance, which can be used
as a ‘confidence’ measurement

import cwv2
import numpy as np

lLoad HAAR face classifier
face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_ jfrontalface_ default.xml ")
Load functions
def face_extractor{img):
Function detects ftaces and returns the cropped face
If no face detected, it returns the input image

gray = cv2.cvitColor({img, cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray, 1.3, 5)

if faces is ():
return None
faces:
cropped_face = img[y:v+h, x:x+w]

return cropped face

Initialize Webcam
cap = cv2_VideoCapture(@)
count = @

Collect 1000 samples of your face from webcam input

while True:

ret, frame = cap.read()

if face_extractor({frame) is not None:
count += 1
face = cv2._resize(face_extractor(frame), (200, 200))
face = cv2.cvtColor({face, cv2.COLOR_BGR2GRAY)

Save file in specified directory with unique name
file_name_path = "E:/apas/pics/" + str{count) + ".Jipg’

cv2_ imwrite(file_ name_path, face)

Put count on images and display live count

SNAPSHOTS OF CODE

Module 1

import cv2

import numpy as np

from os import listdir

from os_path import isfile, join

Get the training data we previously made 1 (lnan
1 UK

"E:/apa/pics/’
[f for £ in listdir(data_path) if isfile(join(data_path, f))]

data path
onlyfiles

Create arrays for training data and labels

Training Data, Labels = [1, []

#*

t Ope
Create a numpy array for training data

=3

for i, files in enumerate(onlyfiles):
image_path = data_path + onlyfiles[i]
images = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
Training Data.append(np.asarray(images, dtype-np.uint8))
Labels.append(i)

Create a numpy array for both training data and labels

Labels = np.asarray(Labels, dtype=np.int32)

Initialize facial recognizer
model = cv2.face.LBPHFaceRecognizer create()
NOTE: For OpenCV 3.0 use cv2.face.createlBPHFaceRecognizer()
Let's train our model
model.train(np.asarray(Training Data), np.asarray(Labels))
print("Model trained sucessefully™)
face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade_frontalface c
def face_detector(img, size=0.5):

Convert image to grayscale

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

faces = face_classifier.detectMultiScale(gray, 1.3, 5)

if faces is ():
return img, []

SNAPSHOTS

Module 2

n training images in our datapath lim

wiLiL

IE0Can

(ap = (ol [idoCapture§)

¢ Tnie:

et frame = cap e

Ingg, it = face cetector(Frane)

face = col.coColon{Face, vl COLOR BR2GRAY)

A - ol
PI565 0r 4 tuple contatning the Latel and the contadence value

except:

cv2.putText(image, “No Face Found”, (220, 12@) , cv2.FONT_HERSHEY_COMPLEX, 1, (9,8,255), 2)

cv2.putText(image, "Locked", (250, 450), cv2.FONT HERSHEY COMPLEX, 1, (9,0,255), 2)
cv2.imshow('Face Recognition', image)

pass

if cv2.waitKey(1) == 13: #13 is the Enter Key

preak

cap.release()
cv2.destroyAlLWindows ()

cv2. imshow()
import time

Load HAAR face classifier

face_classifier = cv2.CascadeClassifier('Haarcascades/haarcascade frontalface default.xml")

Load functions
def face_extractor(img):
Function detects faces and returns the cropped face

If no face detected, it returns the input image

gray = cv2.cviColor(img,cv2.COLOR BGR2GRAY)
faces = face classifier.detectMultiScale(gray, 1.3, 5)

if faces is ():
return None

s Quick access .
@ OneDrive :
aithon2020_AS

Attachments

[Desktop
5 Documents
Downloads
&= Pictures "

= This PC

- 3D Objects

[Desktop

= Documents ! L
¥ Downloads

J’ Music

&= Pictures
B videos
i Local Disk (C:)

«~ Local Disk (E:)

apa

& Network

SCREENSHOTS

This screenshot shows capturing 1000 images of the user to be used as dataset

Confident it is User

RESULTS AND OUTCOMES

This snapshot shows the application being unlocked because the confidence is greater than 85%

References

https://docs.opencv.org/3.4/df/d25/class

cv 1 1face 1 1LBPHFaceRecoqgnizer.h

tml

Facelock: familiarity-based graphical authentication

Research article

Human-Computer Interaction

Psychiatry and Psychology

Rob Jenkins?, Jane L. McLachlan?, Karen Renaud3

0 OpenCV EYREFYe

Dpen Source Computer Vision

https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://peerj.com/search/?type=articles&manuscriptType=research-article
https://peerj.com/search/?type=articles&manuscriptType=research-article
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Psychiatry and Psychology
https://peerj.com/subjects/?filter=Psychiatry and Psychology
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
mailto:rob.jenkins@york.ac.uk
https://peerj.com/articles/444/?wptouch_preview_theme=enabled
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/?wptouch_preview_theme=enabled
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/?wptouch_preview_theme=enabled

THANK YOU

