
FACELOCK
ALGORITHM

APARNA

PROBLEM STATEMENT

 The security of applications in mobile phones or websites is always a major issue

to ensure the security and privacy, we designed a Machine Learning Algorithm

which will only unlock the application or website when it will scan your face.

OBJECTIVE AND SCOPE

The objective of the project
is to provide user an

algorithm which will detect
the face of the user and

unlock the applications or
websites according to that.

It will first take the training
data as an input from the
camera of the device and
then will train the model
from the input and will

detect the face according to
that training of the model

SOFTWARE USED

 Python :- We have used python latest version “ 3.8.5” in the project.

 OpenCV :- OpenCV (OPEN SOUCE COMPUTER VISION) is an open-source BSD-

licensed library that includes several hundreds of computer vision algorithms. We

will use many methods of opencv in this project.

 Anaconda :- Anaconda Enterprise is an enterprise-ready, secure, and scalable

data science platform that empowers teams to govern data science assets,

collaborate, and deploy data science projects.

HARDWARE
USED

A W INDOW S SYSTEM W ITH

W EBCAM IN IT.

METHODOLOGY

 WORKFLOW OF MODULE 1

ABOUT
HARCASCADE CLASSIFIER

 This is basically a machine learning based

approach where a cascade function is trained

from a lot of images both positive and negative.

Based on the training it is then used to detect the

objects in the other images.

USECASES OF
HARCASCADE
CLASSIFIERS

1. FACE DETECTION
using haarcascade_frontalface_default.xml

2. FACE AND EYE DETECTION
using haarcascade_eye.xml

3. VEHICLE DETECTION FROM STREAMING
VIDEO using haarcascade_car.xml

4. PEDESTRIAN DETECTION FROM
STREAMING VIDEO
using haarcascade_fullbody.xml

HARCASCADE
FRONTAL FACE
CLASSIFIER

 It is used to detect only the front

face of the user and eliminates

all the background details

METHODOLOGY

 WORKFLOW OF MODULE 2

ABOUT LBPH MODEL

 Local Binary Pattern (LBP) is a simple yet very efficient texture operator which

labels the pixels of an image by thresholding the neighborhood of each pixel and

considers the result as a binary number.

 It was first described in 1994 (LBP) and has since been found to be a powerful

feature for texture classification. It has further been determined that when LBP is

combined with histograms of oriented gradients (HOG) descriptor, it improves the

detection performance considerably on some datasets.

PARAMETERS
OF LBPH
ALGORITHM

Radius: the radius is used to build the circular local
binary pattern and represents the radius around the
central pixel. It is usually set to 1.

Neighbors: the number of sample points to build the
circular local binary pattern. Keep in mind: the more
sample points you include, the higher the computational
cost. It is usually set to 8.

Grid X: the number of cells in the horizontal direction.
The more cells, the finer the grid, the higher the
dimensionality of the resulting feature vector. It is usually
set to 8.

Grid Y: the number of cells in the vertical direction. The
more cells, the finer the grid, the higher the dimensionality
of the resulting feature vector. It is usually set to 8.

TRAINING THE LBPH ALGORITHM

 First, we need to train the algorithm. To do so, we need to use a dataset with the

facial images of the people we want to recognize. We need to also set an ID (it may

be a number or the name of the person) for each image, so the algorithm will use

this information to recognize an input image and give you an output. Images of the

same person must have the same ID.

APPLYING
THE LBPH
OPERATION

 The first computational step of

the LBPH is to create an

intermediate image that

describes the original image in a

better way, by highlighting the

facial characteristics. To do so,

the algorithm uses a concept of a

sliding window, based on the

parameters radius and neighbor

s.

APPLYING LBPH---CONTD--------

we need take the central value
of the matrix of pixel values to

be used as the threshold.

For each neighbor of the
central value (threshold), we

set a new binary value. We set
1 for values equal or higher
than the threshold and 0 for

values lower than the
threshold.

Now, the matrix will contain
only binary values (ignoring the

central value). We need to
concatenate each binary value

from each position from the
matrix line by line into a new
binary value (e.g. 10001101).

Then, we convert this binary
value to a decimal value and

set it to the central value of the
matrix, which is actually a pixel

from the original image.

At the end of this procedure
(LBP procedure), we have a
new image which represents

better the characteristics of the
original image.

EXTRACTING
HISTOGRAMS IN LBPH

 Now, using the image generated in the last

step, we can use the Grid X and Grid

Y parameters to divide the image into multiple

grids

FACE
RECOGNITION
BY LBPH

 1. So to find the image that matches the

input image we just need to compare

two histograms and return the image

with the closest histogram.

 2. We can use various approaches to

compare the histograms (calculate the

distance between two histograms), for

example: euclidean distance, chi-

square, absolute value, etc.

 3. So the algorithm output is the ID from

the image with the closest histogram.

The algorithm should also return the

calculated distance, which can be used

as a ‘confidence’ measurement

SNAPSHOTS OF CODE
Module 1

SNAPSHOTS
Module 2

SCREENSHOTS
This screenshot shows capturing 1000 images of the user to be used as dataset

RESULTS AND OUTCOMES
This snapshot shows the application being unlocked because the confidence is greater than 85%

References

 https://docs.opencv.org/3.4/df/d25/class

cv_1_1face_1_1LBPHFaceRecognizer.h

tml

 Facelock: familiarity-based graphical authentication

 Research article

 Human-Computer Interaction

 Psychiatry and Psychology

 Rob Jenkins​1, Jane L. McLachlan2, Karen Renaud3

 Published June 24, 2014

https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://docs.opencv.org/3.4/df/d25/classcv_1_1face_1_1LBPHFaceRecognizer.html
https://peerj.com/search/?type=articles&manuscriptType=research-article
https://peerj.com/search/?type=articles&manuscriptType=research-article
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Human-Computer Interaction
https://peerj.com/subjects/?filter=Psychiatry and Psychology
https://peerj.com/subjects/?filter=Psychiatry and Psychology
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
https://peerj.com/articles/444/author-1
mailto:rob.jenkins@york.ac.uk
https://peerj.com/articles/444/?wptouch_preview_theme=enabled
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/author-2
https://peerj.com/articles/444/?wptouch_preview_theme=enabled
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/author-3
https://peerj.com/articles/444/?wptouch_preview_theme=enabled

THANK YOU

