forked from apple/foundationdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flow.h
1023 lines (874 loc) · 29 KB
/
flow.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* flow.h
*
* This source file is part of the FoundationDB open source project
*
* Copyright 2013-2018 Apple Inc. and the FoundationDB project authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FLOW_FLOW_H
#define FLOW_FLOW_H
#pragma once
#pragma warning( disable: 4244 4267 ) // SOMEDAY: Carefully check for integer overflow issues (e.g. size_t to int conversions like this suppresses)
#pragma warning( disable: 4345 )
#pragma warning( error: 4239 )
#include <vector>
#include <queue>
#include <map>
#include <unordered_map>
#include <set>
#include <functional>
#include <iostream>
#include <string>
#include <utility>
#include <algorithm>
#include "flow/Platform.h"
#include "flow/FastAlloc.h"
#include "flow/IRandom.h"
#include "flow/serialize.h"
#include "flow/Deque.h"
#include "flow/ThreadPrimitives.h"
#include "flow/network.h"
#include "flow/FileIdentifier.h"
#include <boost/version.hpp>
using namespace std::rel_ops;
#define TEST(condition) \
if (!(condition)) { \
} else { \
static TraceEvent* __test = &(TraceEvent("CodeCoverage") \
.detail("File", __FILE__) \
.detail("Line", __LINE__) \
.detail("Condition", #condition)); \
(void)__test; \
}
/*
usage:
if (BUGGIFY) (
// code here is executed on some runs (with probability P_BUGGIFIED_SECTION_ACTIVATED),
// sometimes --
)
*/
extern std::vector<double> P_BUGGIFIED_SECTION_ACTIVATED, P_BUGGIFIED_SECTION_FIRES;
extern double P_EXPENSIVE_VALIDATION;
enum class BuggifyType : uint8_t {
General=0, Client
};
bool isBuggifyEnabled(BuggifyType type);
void clearBuggifySections(BuggifyType type);
int getSBVar(std::string file, int line, BuggifyType);
void enableBuggify(bool enabled, BuggifyType type); // Currently controls buggification and (randomized) expensive validation
bool validationIsEnabled(BuggifyType type);
#define BUGGIFY_WITH_PROB(x) (getSBVar(__FILE__, __LINE__, BuggifyType::General) && deterministicRandom()->random01() < (x))
#define BUGGIFY BUGGIFY_WITH_PROB(P_BUGGIFIED_SECTION_FIRES[int(BuggifyType::General)])
#define EXPENSIVE_VALIDATION (validationIsEnabled(BuggifyType::General) && deterministicRandom()->random01() < P_EXPENSIVE_VALIDATION)
extern Optional<uint64_t> parse_with_suffix(std::string toparse, std::string default_unit = "");
extern std::string format(const char* form, ...);
// On success, returns the number of characters written. On failure, returns a negative number.
extern int vsformat(std::string &outputString, const char* form, va_list args);
extern Standalone<StringRef> strinc(StringRef const& str);
extern StringRef strinc(StringRef const& str, Arena& arena);
extern Standalone<StringRef> addVersionStampAtEnd(StringRef const& str);
extern StringRef addVersionStampAtEnd(StringRef const& str, Arena& arena);
template <typename Iter>
StringRef concatenate( Iter b, Iter const& e, Arena& arena ) {
int rsize = 0;
Iter i = b;
while(i != e) {
rsize += i->size();
++i;
}
uint8_t* s = new (arena) uint8_t[ rsize ];
uint8_t* p = s;
while(b != e) {
memcpy(p, b->begin(),b->size());
p += b->size();
++b;
}
return StringRef(s, rsize);
}
template <typename Iter>
Standalone<StringRef> concatenate( Iter b, Iter const& e ) {
Standalone<StringRef> r;
((StringRef &)r) = concatenate(b, e, r.arena());
return r;
}
class Void {
public:
constexpr static FileIdentifier file_identifier = 2010442;
template <class Ar>
void serialize(Ar& ar) {
serializer(ar);
}
};
class Never {};
template <class T>
class ErrorOr : public ComposedIdentifier<T, 0x1> {
public:
ErrorOr() : ErrorOr(default_error_or()) {}
ErrorOr(Error const& error) : error(error) { memset(&value, 0, sizeof(value)); }
ErrorOr(const ErrorOr<T>& o) : error(o.error) {
if (present()) new (&value) T(o.get());
}
template <class U>
ErrorOr(const U& t) : error() { new (&value) T(t); }
ErrorOr(Arena& a, const ErrorOr<T>& o) : error(o.error) {
if (present()) new (&value) T(a, o.get());
}
int expectedSize() const { return present() ? get().expectedSize() : 0; }
template <class R> ErrorOr<R> castTo() const {
return map<R>([](const T& v){ return (R)v; });
}
template <class R> ErrorOr<R> map(std::function<R(T)> f) const {
if (present()) {
return ErrorOr<R>(f(get()));
}
else {
return ErrorOr<R>(error);
}
}
~ErrorOr() {
if (present()) ((T*)&value)->~T();
}
ErrorOr & operator=(ErrorOr const& o) {
if (present()) {
((T*)&value)->~T();
}
if (o.present()) {
new (&value) T(o.get());
}
error = o.error;
return *this;
}
bool present() const { return error.code() == invalid_error_code; }
T& get() {
UNSTOPPABLE_ASSERT(present());
return *(T*)&value;
}
T const& get() const {
UNSTOPPABLE_ASSERT(present());
return *(T const*)&value;
}
T orDefault(T const& default_value) const { if (present()) return get(); else return default_value; }
template <class Ar>
void serialize(Ar& ar) {
// SOMEDAY: specialize for space efficiency?
serializer(ar, error);
if (present()) {
if (Ar::isDeserializing) new (&value) T();
serializer(ar, *(T*)&value);
}
}
bool isError() const { return error.code() != invalid_error_code; }
bool isError(int code) const { return error.code() == code; }
const Error& getError() const { ASSERT(isError()); return error; }
private:
typename std::aligned_storage< sizeof(T), __alignof(T) >::type value;
Error error;
};
template <class T>
struct union_like_traits<ErrorOr<T>> : std::true_type {
using Member = ErrorOr<T>;
using alternatives = pack<Error, T>;
template <class Context>
static uint8_t index(const Member& variant, Context&) { return variant.present() ? 1 : 0; }
template <class Context>
static bool empty(const Member& variant, Context&) { return false; }
template <int i, class Context>
static const index_t<i, alternatives>& get(const Member& m, Context&) {
if constexpr (i == 0) {
return m.getError();
} else {
static_assert(i == 1, "ErrorOr only has two members");
return m.get();
}
}
template <int i, class Alternative, class Context>
static void assign(Member& m, const Alternative& a, Context&) {
if constexpr (i == 0) {
m = a;
} else {
static_assert(i == 1);
m = a;
}
}
};
template <class T>
class CachedSerialization {
public:
constexpr static FileIdentifier file_identifier = FileIdentifierFor<T>::value;
//FIXME: this code will not work for caching a direct serialization from ObjectWriter, because it adds an ErrorOr,
// we should create a separate SerializeType for direct serialization
enum class SerializeType { None, Binary, Object };
CachedSerialization() : cacheType(SerializeType::None) {}
explicit CachedSerialization(const T& data) : data(data), cacheType(SerializeType::None) {}
const T& read() const { return data; }
T& mutate() {
cacheType = SerializeType::None;
return data;
}
//This should only be called from the ObjectSerializer load function
Standalone<StringRef> getCache() const {
if(cacheType != SerializeType::Object) {
cache = ObjectWriter::toValue(ErrorOr<EnsureTable<T>>(data), AssumeVersion(currentProtocolVersion));
cacheType = SerializeType::Object;
}
return cache;
}
bool operator == (CachedSerialization<T> const& rhs) const {
return data == rhs.data;
}
bool operator != (CachedSerialization<T> const& rhs) const {
return !(*this == rhs);
}
bool operator < (CachedSerialization<T> const& rhs) const {
return data < rhs.data;
}
template <class Ar>
void serialize(Ar& ar) {
if constexpr (is_fb_function<Ar>) {
// Suppress vtable collection. Save and load are implemented via the specializations below
} else {
if (Ar::isDeserializing) {
cache = Standalone<StringRef>();
cacheType = SerializeType::None;
serializer(ar, data);
} else {
if (cacheType != SerializeType::Binary) {
cache = BinaryWriter::toValue(data, AssumeVersion(currentProtocolVersion));
cacheType = SerializeType::Binary;
}
ar.serializeBytes(const_cast<uint8_t*>(cache.begin()), cache.size());
}
}
}
private:
T data;
mutable SerializeType cacheType;
mutable Standalone<StringRef> cache;
};
// this special case is needed - the code expects
// Standalone<T> and T to be equivalent for serialization
namespace detail {
template <class T, class Context>
struct LoadSaveHelper<CachedSerialization<T>, Context> : Context {
LoadSaveHelper(const Context& context)
: Context(context), helper(context) {}
void load(CachedSerialization<T>& member, const uint8_t* current) {
helper.load(member.mutate(), current);
}
template <class Writer>
RelativeOffset save(const CachedSerialization<T>& member, Writer& writer, const VTableSet* vtables) {
throw internal_error();
}
private:
LoadSaveHelper<T, Context> helper;
};
} // namespace detail
template <class V>
struct serialize_raw<ErrorOr<EnsureTable<CachedSerialization<V>>>> : std::true_type {
template <class Context>
static uint8_t* save_raw(Context& context, const ErrorOr<EnsureTable<CachedSerialization<V>>>& obj) {
auto cache = obj.present() ? obj.get().asUnderlyingType().getCache()
: ObjectWriter::toValue(ErrorOr<EnsureTable<V>>(obj.getError()),
AssumeVersion(currentProtocolVersion));
uint8_t* out = context.allocate(cache.size());
memcpy(out, cache.begin(), cache.size());
return out;
}
};
template <class T>
struct Callback {
Callback<T> *prev, *next;
virtual void fire(T const&) {}
virtual void error(Error) {}
virtual void unwait() {}
void insert(Callback<T>* into) {
// Add this (uninitialized) callback just after `into`
this->prev = into;
this->next = into->next;
into->next->prev = this;
into->next = this;
}
void insertBack(Callback<T>* into) {
// Add this (uninitialized) callback just before `into`
this->next = into;
this->prev = into->prev;
into->prev->next = this;
into->prev = this;
}
void insertChain(Callback<T>* into) {
// Combine this callback's (initialized) chain and `into`'s such that this callback is just after `into`
auto p = this->prev;
auto n = into->next;
this->prev = into;
into->next = this;
p->next = n;
n->prev = p;
}
void remove() {
// Remove this callback from the list it is in, and call unwait() on the head of that list if this was the last callback
next->prev = prev;
prev->next = next;
if (prev == next)
next->unwait();
}
int countCallbacks() {
int count = 0;
for (Callback* c = next; c != this; c = c->next)
count++;
return count;
}
};
template <class T>
struct SingleCallback {
// Used for waiting on FutureStreams, which don't support multiple callbacks
SingleCallback<T> *next;
virtual void fire(T const&) {}
virtual void error(Error) {}
virtual void unwait() {}
void insert(SingleCallback<T>* into) {
this->next = into->next;
into->next = this;
}
void remove() {
ASSERT(next->next == this);
next->next = next;
next->unwait();
}
};
// SAV is short for Single Assigment Variable: It can be assigned for only once!
template <class T>
struct SAV : private Callback<T>, FastAllocated<SAV<T>> {
int promises; // one for each promise (and one for an active actor if this is an actor)
int futures; // one for each future and one more if there are any callbacks
private:
typename std::aligned_storage< sizeof(T), __alignof(T) >::type value_storage;
public:
Error error_state;
enum { UNSET_ERROR_CODE = -3, NEVER_ERROR_CODE, SET_ERROR_CODE };
T& value() { return *(T*)&value_storage; }
SAV(int futures, int promises) : futures(futures), promises(promises), error_state(Error::fromCode(UNSET_ERROR_CODE)) {
Callback<T>::prev = Callback<T>::next = this;
}
~SAV() {
if (int16_t(error_state.code()) == SET_ERROR_CODE)
value().~T();
}
bool isSet() const { return int16_t(error_state.code()) > NEVER_ERROR_CODE; }
bool canBeSet() const { return int16_t(error_state.code()) == UNSET_ERROR_CODE; }
bool isError() const { return int16_t(error_state.code()) > SET_ERROR_CODE; }
T const& get() {
ASSERT(isSet());
if (isError()) throw error_state;
return value();
}
template <class U>
void send(U && value) {
ASSERT(canBeSet());
new (&value_storage) T(std::forward<U>(value));
this->error_state = Error::fromCode(SET_ERROR_CODE);
while (Callback<T>::next != this)
Callback<T>::next->fire(this->value());
}
void send(Never) {
ASSERT(canBeSet());
this->error_state = Error::fromCode(NEVER_ERROR_CODE);
}
void sendError(Error err) {
ASSERT(canBeSet() && int16_t(err.code()) > 0);
this->error_state = err;
while (Callback<T>::next != this)
Callback<T>::next->error(err);
}
template <class U>
void sendAndDelPromiseRef(U && value) {
ASSERT(canBeSet());
if (promises == 1 && !futures) {
// No one is left to receive the value, so we can just die
destroy();
return;
}
new (&value_storage) T(std::forward<U>(value));
finishSendAndDelPromiseRef();
}
void finishSendAndDelPromiseRef() {
// Call only after value_storage has already been initialized!
this->error_state = Error::fromCode(SET_ERROR_CODE);
while (Callback<T>::next != this)
Callback<T>::next->fire(this->value());
if (!--promises && !futures)
destroy();
}
void sendAndDelPromiseRef(Never) {
ASSERT(canBeSet());
this->error_state = Error::fromCode(NEVER_ERROR_CODE);
if (!--promises && !futures)
destroy();
}
void sendErrorAndDelPromiseRef(Error err) {
ASSERT(canBeSet() && int16_t(err.code()) > 0);
if (promises == 1 && !futures) {
// No one is left to receive the value, so we can just die
destroy();
return;
}
this->error_state = err;
while (Callback<T>::next != this)
Callback<T>::next->error(err);
if (!--promises && !futures)
destroy();
}
void addPromiseRef() { promises++; }
void addFutureRef() { futures++; }
void delPromiseRef() {
if (promises == 1) {
if (futures && canBeSet()) {
sendError(broken_promise());
ASSERT(promises == 1); // Once there is only one promise, there is no one else with the right to change the promise reference count
}
promises = 0;
if (!futures)
destroy();
}
else
--promises;
}
void delFutureRef() {
if (!--futures) {
if (promises)
cancel();
else
destroy();
}
}
int getFutureReferenceCount() const { return futures; }
int getPromiseReferenceCount() const { return promises; }
virtual void destroy() { delete this; }
virtual void cancel() {}
void addCallbackAndDelFutureRef(Callback<T>* cb) {
// We are always *logically* dropping one future reference from this, but if we are adding a first callback
// we also need to add one (since futures is defined as being +1 if there are any callbacks), so net nothing
if (Callback<T>::next != this)
delFutureRef();
cb->insert(this);
}
void addYieldedCallbackAndDelFutureRef(Callback<T>* cb) {
// Same contract as addCallbackAndDelFutureRef, except that the callback is placed at the end of the callback chain rather than at the beginning
if (Callback<T>::next != this)
delFutureRef();
cb->insertBack(this);
}
void addCallbackChainAndDelFutureRef(Callback<T>* cb) {
if (Callback<T>::next != this)
delFutureRef();
cb->insertChain(this);
}
virtual void unwait() {
delFutureRef();
}
virtual void fire() { ASSERT(false); }
};
template <class T>
struct NotifiedQueue : private SingleCallback<T>, FastAllocated<NotifiedQueue<T>> {
int promises; // one for each promise (and one for an active actor if this is an actor)
int futures; // one for each future and one more if there are any callbacks
// Invariant: SingleCallback<T>::next==this || (queue.empty() && !error.isValid())
std::queue<T, Deque<T>> queue;
Error error;
NotifiedQueue(int futures, int promises) : futures(futures), promises(promises) {
SingleCallback<T>::next = this;
}
bool isReady() const { return !queue.empty() || error.isValid(); }
bool isError() const { return queue.empty() && error.isValid(); } // the *next* thing queued is an error
T pop() {
if (queue.empty()) {
if (error.isValid()) throw error;
throw internal_error();
}
auto copy = queue.front();
queue.pop();
return copy;
}
template <class U>
void send(U && value) {
if (error.isValid()) return;
if (SingleCallback<T>::next != this) {
SingleCallback<T>::next->fire(std::forward<U>(value));
}
else {
queue.emplace(std::forward<U>(value));
}
}
void sendError(Error err) {
if (error.isValid()) return;
this->error = err;
if (SingleCallback<T>::next != this)
SingleCallback<T>::next->error(err);
}
void addPromiseRef() { promises++; }
void addFutureRef() { futures++; }
void delPromiseRef() {
if (!--promises) {
if (futures) {
sendError(broken_promise());
}
else
destroy();
}
}
void delFutureRef() {
if (!--futures) {
if (promises)
cancel();
else
destroy();
}
}
int getFutureReferenceCount() const { return futures; }
int getPromiseReferenceCount() const { return promises; }
virtual void destroy() { delete this; }
virtual void cancel() {}
void addCallbackAndDelFutureRef(SingleCallback<T>* cb) {
ASSERT(SingleCallback<T>::next == this);
cb->insert(this);
}
virtual void unwait() {
delFutureRef();
}
virtual void fire() { ASSERT(false); }
};
template <class T>
class Promise;
template <class T>
class Future
{
public:
T const& get() const { return sav->get(); }
T getValue() const { return get(); }
bool isValid() const {
return sav != 0;
}
bool isReady() const {
return sav->isSet();
}
bool isError() const {
return sav->isError();
}
Error& getError() const {
ASSERT(isError());
return sav->error_state;
}
Future() : sav(0) {}
Future(const Future<T>& rhs) : sav(rhs.sav) {
if (sav) sav->addFutureRef();
//if (sav->endpoint.isValid()) cout << "Future copied for " << sav->endpoint.key << endl;
}
Future(Future<T>&& rhs) BOOST_NOEXCEPT : sav(rhs.sav) {
rhs.sav = 0;
//if (sav->endpoint.isValid()) cout << "Future moved for " << sav->endpoint.key << endl;
}
Future(const T& presentValue)
: sav(new SAV<T>(1, 0))
{
sav->send(presentValue);
}
Future(Never)
: sav(new SAV<T>(1, 0))
{
sav->send(Never());
}
Future(const Error& error)
: sav(new SAV<T>(1, 0))
{
sav->sendError(error);
}
#ifndef NO_INTELLISENSE
template<class U>
Future(const U&, typename std::enable_if<std::is_assignable<T, U>::value, int*>::type = 0) {}
#endif
~Future() {
//if (sav && sav->endpoint.isValid()) cout << "Future destroyed for " << sav->endpoint.key << endl;
if (sav) sav->delFutureRef();
}
void operator=(const Future<T>& rhs) {
if (rhs.sav) rhs.sav->addFutureRef();
if (sav) sav->delFutureRef();
sav = rhs.sav;
}
void operator=(Future<T>&& rhs) BOOST_NOEXCEPT {
if (sav != rhs.sav) {
if (sav) sav->delFutureRef();
sav = rhs.sav;
rhs.sav = 0;
}
}
bool operator == (const Future& rhs) { return rhs.sav == sav; }
bool operator != (const Future& rhs) { return rhs.sav != sav; }
void cancel() {
if (sav) sav->cancel();
}
void addCallbackAndClear(Callback<T>* cb) {
sav->addCallbackAndDelFutureRef(cb);
sav = 0;
}
void addYieldedCallbackAndClear(Callback<T>* cb) {
sav->addYieldedCallbackAndDelFutureRef(cb);
sav = 0;
}
void addCallbackChainAndClear(Callback<T>* cb) {
sav->addCallbackChainAndDelFutureRef(cb);
sav = 0;
}
int getFutureReferenceCount() const { return sav->getFutureReferenceCount(); }
int getPromiseReferenceCount() const { return sav->getPromiseReferenceCount(); }
explicit Future(SAV<T> * sav) : sav(sav) {
//if (sav->endpoint.isValid()) cout << "Future created for " << sav->endpoint.key << endl;
}
private:
SAV<T>* sav;
friend class Promise<T>;
};
// This class is used by the flow compiler when generating code around wait statements to avoid confusing situations
// regarding Futures.
//
// For example, the following is legal with Future but not with StrictFuture:
//
// Future<T> x = ...
// T result = wait(x); // This is the correct code
// Future<T> result = wait(x); // This is legal if wait() generates Futures, but it's probably wrong. It's a compilation error if wait() generates StrictFutures.
template <class T>
class StrictFuture : public Future<T> {
public:
inline StrictFuture(Future<T> const& f) : Future<T>(f) {}
inline StrictFuture(Never n) : Future<T>(n) {}
private:
StrictFuture(T t) {}
StrictFuture(Error e) {}
};
template <class T>
class Promise sealed
{
public:
template <class U>
void send(U && value) const {
sav->send(std::forward<U>(value));
}
template <class E>
void sendError(const E& exc) const { sav->sendError(exc); }
Future<T> getFuture() const { sav->addFutureRef(); return Future<T>(sav); }
bool isSet() { return sav->isSet(); }
bool canBeSet() { return sav->canBeSet(); }
bool isValid() const { return sav != NULL; }
Promise() : sav(new SAV<T>(0, 1)) {}
Promise(const Promise& rhs) : sav(rhs.sav) { sav->addPromiseRef(); }
Promise(Promise&& rhs) BOOST_NOEXCEPT : sav(rhs.sav) { rhs.sav = 0; }
~Promise() { if (sav) sav->delPromiseRef(); }
void operator=(const Promise& rhs) {
if (rhs.sav) rhs.sav->addPromiseRef();
if (sav) sav->delPromiseRef();
sav = rhs.sav;
}
void operator=(Promise && rhs) BOOST_NOEXCEPT {
if (sav != rhs.sav) {
if (sav) sav->delPromiseRef();
sav = rhs.sav;
rhs.sav = 0;
}
}
void reset() {
*this = Promise<T>();
}
void swap(Promise& other) {
std::swap(sav, other.sav);
}
// Beware, these operations are very unsafe
SAV<T>* extractRawPointer() { auto ptr = sav; sav = NULL; return ptr; }
explicit Promise<T>(SAV<T>* ptr) : sav(ptr) {}
int getFutureReferenceCount() const { return sav->getFutureReferenceCount(); }
int getPromiseReferenceCount() const { return sav->getPromiseReferenceCount(); }
private:
SAV<T> *sav;
};
template <class T>
class FutureStream {
public:
bool isValid() const {
return queue != 0;
}
bool isReady() const {
return queue->isReady();
}
bool isError() const {
// This means that the next thing to be popped is an error - it will be false if there is an error in the stream but some actual data first
return queue->isError();
}
void addCallbackAndClear(SingleCallback<T>* cb) {
queue->addCallbackAndDelFutureRef(cb);
queue = 0;
}
FutureStream() : queue(NULL) {}
FutureStream(const FutureStream& rhs) : queue(rhs.queue) { queue->addFutureRef(); }
FutureStream(FutureStream&& rhs) BOOST_NOEXCEPT : queue(rhs.queue) { rhs.queue = 0; }
~FutureStream() { if (queue) queue->delFutureRef(); }
void operator=(const FutureStream& rhs) {
rhs.queue->addFutureRef();
if (queue) queue->delFutureRef();
queue = rhs.queue;
}
void operator=(FutureStream&& rhs) BOOST_NOEXCEPT {
if (rhs.queue != queue) {
if (queue) queue->delFutureRef();
queue = rhs.queue;
rhs.queue = 0;
}
}
bool operator == (const FutureStream& rhs) { return rhs.queue == queue; }
bool operator != (const FutureStream& rhs) { return rhs.queue != queue; }
T pop() {
return queue->pop();
}
Error getError() {
ASSERT(queue->isError());
return queue->error;
}
explicit FutureStream(NotifiedQueue<T>* queue) : queue(queue) {}
private:
NotifiedQueue<T>* queue;
};
template <class Request>
decltype(fake<Request>().reply) const& getReplyPromise(Request const& r) { return r.reply; }
// Neither of these implementations of REPLY_TYPE() works on both MSVC and g++, so...
#ifdef __GNUG__
#define REPLY_TYPE(RequestType) decltype( getReplyPromise( fake<RequestType>() ).getFuture().getValue() )
//#define REPLY_TYPE(RequestType) decltype( getReplyFuture( fake<RequestType>() ).getValue() )
#else
template <class T>
struct ReplyType {
// Doing this calculation directly in the return value declaration for PromiseStream<T>::getReply()
// breaks IntelliSense in VS2010; this is a workaround.
typedef decltype(fake<T>().reply.getFuture().getValue()) Type;
};
template <class T> class ReplyPromise;
template <class T>
struct ReplyType<ReplyPromise<T>> {
typedef T Type;
};
#define REPLY_TYPE(RequestType) typename ReplyType<RequestType>::Type
#endif
template <class T>
class PromiseStream {
public:
// stream.send( request )
// Unreliable at most once delivery: Delivers request unless there is a connection failure (zero or one times)
void send(const T& value) const {
queue->send(value);
}
void sendError(const Error& error) const {
queue->sendError(error);
}
// stream.getReply( request )
// Reliable at least once delivery: Eventually delivers request at least once and returns one of the replies if communication is possible. Might deliver request
// more than once.
// If a reply is returned, request was or will be delivered one or more times.
// If cancelled, request was or will be delivered zero or more times.
template <class X>
Future<REPLY_TYPE(X)> getReply(const X& value) const {
send(value);
return getReplyPromise(value).getFuture();
}
template <class X>
Future<REPLY_TYPE(X)> getReply(const X& value, TaskPriority taskID) const {
setReplyPriority(value, taskID);
return getReplyPromise(value).getFuture();
}
template <class X>
Future<X> getReply() const {
return getReply(Promise<X>());
}
template <class X>
Future<X> getReplyWithTaskID(TaskPriority taskID) const {
Promise<X> reply;
reply.getEndpoint(taskID);
return getReply(reply);
}
FutureStream<T> getFuture() const { queue->addFutureRef(); return FutureStream<T>(queue); }
PromiseStream() : queue(new NotifiedQueue<T>(0, 1)) {}
PromiseStream(const PromiseStream& rhs) : queue(rhs.queue) { queue->addPromiseRef(); }
PromiseStream(PromiseStream&& rhs) BOOST_NOEXCEPT : queue(rhs.queue) { rhs.queue = 0; }
void operator=(const PromiseStream& rhs) {
rhs.queue->addPromiseRef();
if (queue) queue->delPromiseRef();
queue = rhs.queue;
}
void operator=(PromiseStream&& rhs) BOOST_NOEXCEPT {
if (queue != rhs.queue) {
if (queue) queue->delPromiseRef();
queue = rhs.queue;
rhs.queue = 0;
}
}
~PromiseStream() {
if (queue)
queue->delPromiseRef();
//queue = (NotifiedQueue<T>*)0xdeadbeef;
}
bool operator == (const PromiseStream<T>& rhs) const { return queue == rhs.queue; }
bool isEmpty() const { return !queue->isReady(); }
private:
NotifiedQueue<T>* queue;
};
//extern int actorCount;
template <class T>
static inline void destruct(T& t) {
t.~T();
}
template <class ReturnValue>
struct Actor : SAV<ReturnValue> {
int8_t actor_wait_state; // -1 means actor is cancelled; 0 means actor is not waiting; 1-N mean waiting in callback group #
Actor() : SAV<ReturnValue>(1, 1), actor_wait_state(0) { /*++actorCount;*/ }
//~Actor() { --actorCount; }
};
template <>
struct Actor<void> {
// This specialization is for a void actor (one not returning a future, hence also uncancellable)
int8_t actor_wait_state; // 0 means actor is not waiting; 1-N mean waiting in callback group #
Actor() : actor_wait_state(0) { /*++actorCount;*/ }
//~Actor() { --actorCount; }
};
template <class ActorType, int CallbackNumber, class ValueType>
struct ActorCallback : Callback<ValueType> {
virtual void fire(ValueType const& value) {
static_cast<ActorType*>(this)->a_callback_fire(this, value);
}