-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathAutoDiff.swift
466 lines (408 loc) · 16 KB
/
AutoDiff.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
//===--- AutoDiff.swift ---------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// SWIFT_ENABLE_TENSORFLOW
//
// This file defines support for automatic differentiation.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Compiler Protocols
//===----------------------------------------------------------------------===//
/// A type that represents an unranked vector space. Values of this type are
/// elements in this vector space and have either no shape or a static shape.
public protocol VectorNumeric : AdditiveArithmetic {
/// The type of scalars in the vector space.
associatedtype Scalar : AdditiveArithmetic
static func * (lhs: Scalar, rhs: Self) -> Self
static func *= (lhs: inout Self, rhs: Scalar)
}
public extension VectorNumeric {
static func * (lhs: Self, rhs: Scalar) -> Self {
return rhs * lhs
}
static func *= (lhs: inout Self, rhs: Scalar) {
lhs = rhs * lhs
}
}
/// A type that represents an unranked vector space. Values of this type are
/// elements in this vector space and have a dynamic shape.
public protocol ShapedVectorNumeric : VectorNumeric {
/// The type whose values specifies the dimensionality of an object in the
/// vector space.
associatedtype Shape
/// Create an object in the vector space with the specified shape by filling
/// the object with the specified scalar value.
///
/// - Parameters:
/// - shape: the shape
/// - repeatedValue: the value repeat for the specified shape
init(repeating repeatedValue: Scalar, shape: Shape)
}
/// A type that mathematically represents a differentiable manifold whose
/// tangent spaces are finite-dimensional.
///
/// - Note: Do not use this protocol directly. Use `Differentiable` instead.
///
// TODO(TF-213): Merge this into `Differentiable` when the generic signature
// minimization bug (SR-9595) is fixed.
public protocol __Differentiable {
/// The tangent bundle of this differentiable manifold.
associatedtype TangentVector : AdditiveArithmetic
/// The cotangent bundle of this differentiable manifold.
associatedtype CotangentVector : AdditiveArithmetic
/// The type of all differentiable variables in this type.
associatedtype AllDifferentiableVariables : Differentiable
/// All differentiable variables in this type.
var allDifferentiableVariables: AllDifferentiableVariables { get set }
/// Returns `self` moved along the value space towards the given tangent
/// vector. In Riemannian geometry (mathematics), this represents an
/// exponential map.
func moved(along direction: TangentVector) -> Self
/// Convert a cotangent vector to its corresponding tangent vector.
func tangentVector(from cotangent: CotangentVector) -> TangentVector
}
/// A type that mathematically represents a differentiable manifold whose
/// tangent spaces are finite-dimensional.
///
/// - Note: Do not use this protocol directly. Use `Differentiable` instead.
///
// TODO(TF-213): Merge this into `Differentiable` when the generic signature
// minimization bug (SR-9595) is fixed.
public protocol _Differentiable : __Differentiable
where TangentVector : Differentiable, CotangentVector : Differentiable {
}
/// A type that mathematically represents a differentiable manifold whose
/// tangent spaces are finite-dimensional.
public protocol Differentiable : _Differentiable
where TangentVector.TangentVector == TangentVector,
TangentVector.CotangentVector == CotangentVector,
CotangentVector.TangentVector == CotangentVector,
CotangentVector.CotangentVector == TangentVector,
AllDifferentiableVariables.AllDifferentiableVariables ==
AllDifferentiableVariables,
AllDifferentiableVariables.TangentVector == TangentVector,
AllDifferentiableVariables.CotangentVector == CotangentVector {
}
public extension Differentiable where AllDifferentiableVariables == Self {
var allDifferentiableVariables: AllDifferentiableVariables {
get { return self }
set { self = newValue }
}
}
// FIXME: The `Self : AdditiveArithmetic` constraint should be implied by
// `TangentVector == Self`, but the type checker errors out when it does not
// exist.
public extension Differentiable
where TangentVector == Self, Self : AdditiveArithmetic {
func moved(along direction: TangentVector) -> Self {
return self + direction
}
}
//===----------------------------------------------------------------------===//
// Functional utilities
//===----------------------------------------------------------------------===//
/// Create a differentiable function from a vector-Jacobian products function.
@inlinable
public func differentiableFunction<T : Differentiable, R : Differentiable>(
from vjp: @escaping (T)
-> (value: R, pullback: (R.CotangentVector) -> T.CotangentVector)
) -> @differentiable (T) -> R {
@differentiable(vjp: _vjp)
func original(_ x: T) -> R {
return vjp(x).value
}
func _vjp(_ x: T) -> (R, (R.CotangentVector) -> T.CotangentVector) {
return vjp(x)
}
return original
}
/// Create a differentiable function from a vector-Jacobian products function.
@inlinable
public func differentiableFunction<T, U, R>(
from vjp: @escaping (T, U)
-> (value: R, pullback: (R.CotangentVector)
-> (T.CotangentVector, U.CotangentVector))
) -> @differentiable (T, U) -> R
where T : Differentiable, U : Differentiable, R : Differentiable {
@differentiable(vjp: _vjp)
func original(_ x: T, _ y: U) -> R {
return vjp(x, y).value
}
func _vjp(_ x: T, _ y: U)
-> (R, (R.CotangentVector) -> (T.CotangentVector, U.CotangentVector)) {
return vjp(x, y)
}
return original
}
/// Make a function be recomputed in its pullback, known as "checkpointing" in
/// traditional automatic differentiation.
@inlinable
public func withRecomputationInPullbacks<T, U>(
_ body: @escaping @differentiable (T) -> U
) -> @differentiable (T) -> U where T : Differentiable, U : Differentiable {
return differentiableFunction { x in
(value: body(x), pullback: { v in pullback(at: x, in: body)(v) })
}
}
public extension Differentiable {
@inlinable
@differentiable(wrt: self, vjp: _vjp_withRecomputationInPullbacks)
func withRecomputationInPullbacks<Result : Differentiable>(
_ body: @escaping @differentiable (Self) -> Result
) -> Result {
return body(self)
}
@usableFromInline
internal func _vjp_withRecomputationInPullbacks<Result : Differentiable>(
_ body: @escaping @differentiable (Self) -> Result
) -> (Result, (Result.CotangentVector) -> CotangentVector) {
return valueWithPullback(in: Swift.withRecomputationInPullbacks(body))
}
}
//===----------------------------------------------------------------------===//
// Method-style differential operators
//===----------------------------------------------------------------------===//
public extension Differentiable {
@inlinable
func valueWithPullback<R : Differentiable>(
in f: @differentiable (Self) -> R
) -> (value: R, pullback: (R.CotangentVector) -> CotangentVector) {
return Builtin.autodiffApply_vjp_arity1(f, self)
}
@inlinable
func pullback<R : Differentiable>(
in f: @differentiable (Self) -> R
) -> (R.CotangentVector) -> CotangentVector {
return Builtin.autodiffApply_vjp_arity1(f, self).1
}
@inlinable
func gradient<R : Differentiable>(
in f: @differentiable (Self) -> R
) -> CotangentVector
where R : FloatingPoint, R.CotangentVector == R {
return self.pullback(in: f)(R(1))
}
@inlinable
func valueWithGradient<R : Differentiable>(
in f: @differentiable (Self) -> R
) -> (value: R, gradient: CotangentVector)
where R : FloatingPoint, R.CotangentVector == R {
let (y, pb) = self.valueWithPullback(in: f)
return (y, pb(R(1)))
}
@inlinable
func valueWithPullback<T : Differentiable, R : Differentiable>(
at x: T, in f: @differentiable (Self, T) -> R
) -> (value: R,
pullback: (R.CotangentVector) -> (CotangentVector, T.CotangentVector)) {
return Builtin.autodiffApply_vjp_arity2(f, self, x)
}
@inlinable
func pullback<T : Differentiable, R : Differentiable>(
at x: T, in f: @differentiable (Self, T) -> R
) -> (R.CotangentVector) -> (CotangentVector, T.CotangentVector) {
return Builtin.autodiffApply_vjp_arity2(f, self, x).1
}
@inlinable
func gradient<T : Differentiable, R : Differentiable>(
at x: T, in f: @differentiable (Self, T) -> R
) -> (CotangentVector, T.CotangentVector)
where R : FloatingPoint, R.CotangentVector == R {
return self.pullback(at: x, in: f)(R(1))
}
@inlinable
func valueWithGradient<T : Differentiable, R : Differentiable>(
at x: T, in f: @differentiable (Self, T) -> R
) -> (value: R, gradient: (CotangentVector, T.CotangentVector))
where R : FloatingPoint, R.CotangentVector == R {
let (y, pb) = self.valueWithPullback(at: x, in: f)
return (y, pb(R(1)))
}
}
//===----------------------------------------------------------------------===//
// Free-function-style differential operators
//===----------------------------------------------------------------------===//
// Value with pullback
@inlinable
public func valueWithPullback<T, R>(
at x: T, in f: @differentiable (T) -> R
) -> (value: R, pullback: (R.CotangentVector) -> T.CotangentVector)
where T : Differentiable, R : Differentiable {
return Builtin.autodiffApply_vjp(f, x)
}
@inlinable
public func valueWithPullback<T, U, R>(
at x: T, _ y: U, in f: @differentiable (T, U) -> R
) -> (value: R,
pullback: (R.CotangentVector) -> (T.CotangentVector, U.CotangentVector))
where T : Differentiable, U : Differentiable, R : Differentiable {
return Builtin.autodiffApply_vjp_arity2(f, x, y)
}
@inlinable
public func valueWithPullback<T, U, V, R>(
at x: T, _ y: U, _ z: V, in f: @differentiable (T, U, V) -> R
) -> (value: R,
pullback: (R.CotangentVector)
-> (T.CotangentVector, U.CotangentVector, V.CotangentVector))
where T : Differentiable, U : Differentiable, V : Differentiable,
R : Differentiable {
return Builtin.autodiffApply_vjp_arity3(f, x, y, z)
}
// NOTE: This is not an official API.
// TODO: Remove this once we flesh out differentiability for curried functions.
@inlinable
public func _valueWithPullback<T, U, R>(
at x: T, _ y: U, in f: @differentiable (T) -> (U) -> R
) -> (value: R, pullback: (R.CotangentVector) -> (T.CotangentVector, U.CotangentVector))
where T : Differentiable, U : Differentiable, R : Differentiable {
return Builtin.autodiffApply_vjp_method(f, x, y)
}
// Pullback
@inlinable
public func pullback<T, R>(
at x: T, in f: @differentiable (T) -> R
) -> (R.CotangentVector) -> T.CotangentVector
where T : Differentiable, R : Differentiable {
return Builtin.autodiffApply_vjp(f, x).1
}
@inlinable
public func pullback<T, U, R>(
at x: T, _ y: U, in f: @differentiable (T, U) -> R
) -> (R.CotangentVector) -> (T.CotangentVector, U.CotangentVector)
where T : Differentiable, U : Differentiable, R : Differentiable {
return Builtin.autodiffApply_vjp_arity2(f, x, y).1
}
@inlinable
public func pullback<T, U, V, R>(
at x: T, _ y: U, _ z: V, in f: @differentiable (T, U, V) -> R
) -> (R.CotangentVector)
-> (T.CotangentVector, U.CotangentVector, V.CotangentVector)
where T : Differentiable, U : Differentiable, V : Differentiable,
R : Differentiable {
return Builtin.autodiffApply_vjp_arity3(f, x, y, z).1
}
// Value with gradient
@inlinable
public func valueWithGradient<T, R>(
at x: T, in f: @differentiable (T) -> R
) -> (value: R, gradient: T.CotangentVector)
where T : Differentiable, R : FloatingPoint & Differentiable,
R.CotangentVector == R {
let (y, pullback) = valueWithPullback(at: x, in: f)
return (y, pullback(R(1)))
}
@inlinable
public func valueWithGradient<T, U, R>(
at x: T, _ y: U, in f: @differentiable (T, U) -> R
) -> (value: R, gradient: (T.CotangentVector, U.CotangentVector))
where T : Differentiable, U : Differentiable,
R : FloatingPoint & Differentiable, R.CotangentVector == R {
let (y, pullback) = valueWithPullback(at: x, y, in: f)
return (y, pullback(R(1)))
}
@inlinable
public func valueWithGradient<T, U, V, R>(
at x: T, _ y: U, _ z: V, in f: @differentiable (T, U, V) -> R
) -> (value: R,
gradient: (T.CotangentVector, U.CotangentVector, V.CotangentVector))
where T : Differentiable, U : Differentiable, V : Differentiable,
R : FloatingPoint & Differentiable, R.CotangentVector == R {
let (y, pullback) = valueWithPullback(at: x, y, z, in: f)
return (y, pullback(R(1)))
}
// Value with gradient (curried)
@inlinable
public func valueWithGradient<T, R>(
of f: @escaping @differentiable (T) -> R
) -> (T) -> (value: R, gradient: T.CotangentVector)
where T : Differentiable, R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x in valueWithGradient(at: x, in: f) }
}
@inlinable
public func valueWithGradient<T, U, R>(
of f: @escaping @differentiable (T, U) -> R
) -> (T, U) -> (value: R, gradient: (T.CotangentVector, U.CotangentVector))
where T : Differentiable, U : Differentiable,
R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x, y in valueWithGradient(at: x, y, in: f) }
}
@inlinable
public func valueWithGradient<T, U, V, R>(
of f: @escaping @differentiable (T, U, V) -> R
) -> (T, U, V)
-> (value: R,
gradient: (T.CotangentVector, U.CotangentVector, V.CotangentVector))
where T : Differentiable, U : Differentiable, V : Differentiable,
R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x, y, z in valueWithGradient(at: x, y, z, in: f) }
}
// Gradient
@inlinable
public func gradient<T, R>(
at x: T, in f: @differentiable (T) -> R
) -> T.CotangentVector
where T : Differentiable, R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return pullback(at: x, in: f)(R(1))
}
@inlinable
public func gradient<T, U, R>(
at x: T, _ y: U, in f: @differentiable (T, U) -> R
) -> (T.CotangentVector, U.CotangentVector)
where T : Differentiable, U : Differentiable,
R : FloatingPoint & Differentiable, R.CotangentVector == R {
return pullback(at: x, y, in: f)(R(1))
}
@inlinable
public func gradient<T, U, V, R>(
at x: T, _ y: U, _ z: V, in f: @differentiable (T, U, V) -> R
) -> (T.CotangentVector, U.CotangentVector, V.CotangentVector)
where T : Differentiable, U : Differentiable, V : Differentiable,
R : FloatingPoint & Differentiable, R.CotangentVector == R {
return pullback(at: x, y, z, in: f)(R(1))
}
// Gradient (curried)
@inlinable
public func gradient<T, R>(
of f: @escaping @differentiable (T) -> R
) -> (T) -> T.CotangentVector
where T : Differentiable, R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x in gradient(at: x, in: f) }
}
@inlinable
public func gradient<T, U, R>(
of f: @escaping @differentiable (T, U) -> R
) -> (T, U) -> (T.CotangentVector, U.CotangentVector)
where T : Differentiable, U : Differentiable,
R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x, y in gradient(at: x, y, in: f) }
}
@inlinable
public func gradient<T, U, V, R>(
of f: @escaping @differentiable (T, U, V) -> R
) -> (T, U, V) -> (T.CotangentVector, U.CotangentVector, V.CotangentVector)
where T : Differentiable, U : Differentiable, V : Differentiable,
R : FloatingPoint & Differentiable,
R.CotangentVector == R {
return { x, y, z in gradient(at: x, y, z, in: f) }
}
//===----------------------------------------------------------------------===//
// Builtins
//===----------------------------------------------------------------------===//
@usableFromInline @_fixed_layout
class _AutoDiffTape<Element> {}