-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Array.swift
2083 lines (1943 loc) · 78.4 KB
/
Array.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- Array.swift ------------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Three generic, mutable array-like types with value semantics.
//
// - `Array<Element>` is like `ContiguousArray<Element>` when `Element` is not
// a reference type or an Objective-C existential. Otherwise, it may use
// an `NSArray` bridged from Cocoa for storage.
//
//===----------------------------------------------------------------------===//
/// An ordered, random-access collection.
///
/// Arrays are one of the most commonly used data types in an app. You use
/// arrays to organize your app's data. Specifically, you use the `Array` type
/// to hold elements of a single type, the array's `Element` type. An array
/// can store any kind of elements---from integers to strings to classes.
///
/// Swift makes it easy to create arrays in your code using an array literal:
/// simply surround a comma-separated list of values with square brackets.
/// Without any other information, Swift creates an array that includes the
/// specified values, automatically inferring the array's `Element` type. For
/// example:
///
/// // An array of 'Int' elements
/// let oddNumbers = [1, 3, 5, 7, 9, 11, 13, 15]
///
/// // An array of 'String' elements
/// let streets = ["Albemarle", "Brandywine", "Chesapeake"]
///
/// You can create an empty array by specifying the `Element` type of your
/// array in the declaration. For example:
///
/// // Shortened forms are preferred
/// var emptyDoubles: [Double] = []
///
/// // The full type name is also allowed
/// var emptyFloats: Array<Float> = Array()
///
/// If you need an array that is preinitialized with a fixed number of default
/// values, use the `Array(repeating:count:)` initializer.
///
/// var digitCounts = Array(repeating: 0, count: 10)
/// print(digitCounts)
/// // Prints "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]"
///
/// Accessing Array Values
/// ======================
///
/// When you need to perform an operation on all of an array's elements, use a
/// `for`-`in` loop to iterate through the array's contents.
///
/// for street in streets {
/// print("I don't live on \(street).")
/// }
/// // Prints "I don't live on Albemarle."
/// // Prints "I don't live on Brandywine."
/// // Prints "I don't live on Chesapeake."
///
/// Use the `isEmpty` property to check quickly whether an array has any
/// elements, or use the `count` property to find the number of elements in
/// the array.
///
/// if oddNumbers.isEmpty {
/// print("I don't know any odd numbers.")
/// } else {
/// print("I know \(oddNumbers.count) odd numbers.")
/// }
/// // Prints "I know 8 odd numbers."
///
/// Use the `first` and `last` properties for safe access to the value of the
/// array's first and last elements. If the array is empty, these properties
/// are `nil`.
///
/// if let firstElement = oddNumbers.first, let lastElement = oddNumbers.last {
/// print(firstElement, lastElement, separator: ", ")
/// }
/// // Prints "1, 15"
///
/// print(emptyDoubles.first, emptyDoubles.last, separator: ", ")
/// // Prints "nil, nil"
///
/// You can access individual array elements through a subscript. The first
/// element of a nonempty array is always at index zero. You can subscript an
/// array with any integer from zero up to, but not including, the count of
/// the array. Using a negative number or an index equal to or greater than
/// `count` triggers a runtime error. For example:
///
/// print(oddNumbers[0], oddNumbers[3], separator: ", ")
/// // Prints "1, 7"
///
/// print(emptyDoubles[0])
/// // Triggers runtime error: Index out of range
///
/// Adding and Removing Elements
/// ============================
///
/// Suppose you need to store a list of the names of students that are signed
/// up for a class you're teaching. During the registration period, you need
/// to add and remove names as students add and drop the class.
///
/// var students = ["Ben", "Ivy", "Jordell"]
///
/// To add single elements to the end of an array, use the `append(_:)` method.
/// Add multiple elements at the same time by passing another array or a
/// sequence of any kind to the `append(contentsOf:)` method.
///
/// students.append("Maxime")
/// students.append(contentsOf: ["Shakia", "William"])
/// // ["Ben", "Ivy", "Jordell", "Maxime", "Shakia", "William"]
///
/// You can add new elements in the middle of an array by using the
/// `insert(_:at:)` method for single elements and by using
/// `insert(contentsOf:at:)` to insert multiple elements from another
/// collection or array literal. The elements at that index and later indices
/// are shifted back to make room.
///
/// students.insert("Liam", at: 3)
/// // ["Ben", "Ivy", "Jordell", "Liam", "Maxime", "Shakia", "William"]
///
/// To remove elements from an array, use the `remove(at:)`,
/// `removeSubrange(_:)`, and `removeLast()` methods.
///
/// // Ben's family is moving to another state
/// students.remove(at: 0)
/// // ["Ivy", "Jordell", "Liam", "Maxime", "Shakia", "William"]
///
/// // William is signing up for a different class
/// students.removeLast()
/// // ["Ivy", "Jordell", "Liam", "Maxime", "Shakia"]
///
/// You can replace an existing element with a new value by assigning the new
/// value to the subscript.
///
/// if let i = students.firstIndex(of: "Maxime") {
/// students[i] = "Max"
/// }
/// // ["Ivy", "Jordell", "Liam", "Max", "Shakia"]
///
/// Growing the Size of an Array
/// ----------------------------
///
/// Every array reserves a specific amount of memory to hold its contents. When
/// you add elements to an array and that array begins to exceed its reserved
/// capacity, the array allocates a larger region of memory and copies its
/// elements into the new storage. The new storage is a multiple of the old
/// storage's size. This exponential growth strategy means that appending an
/// element happens in constant time, averaging the performance of many append
/// operations. Append operations that trigger reallocation have a performance
/// cost, but they occur less and less often as the array grows larger.
///
/// If you know approximately how many elements you will need to store, use the
/// `reserveCapacity(_:)` method before appending to the array to avoid
/// intermediate reallocations. Use the `capacity` and `count` properties to
/// determine how many more elements the array can store without allocating
/// larger storage.
///
/// For arrays of most `Element` types, this storage is a contiguous block of
/// memory. For arrays with an `Element` type that is a class or `@objc`
/// protocol type, this storage can be a contiguous block of memory or an
/// instance of `NSArray`. Because any arbitrary subclass of `NSArray` can
/// become an `Array`, there are no guarantees about representation or
/// efficiency in this case.
///
/// Modifying Copies of Arrays
/// ==========================
///
/// Each array has an independent value that includes the values of all of its
/// elements. For simple types such as integers and other structures, this
/// means that when you change a value in one array, the value of that element
/// does not change in any copies of the array. For example:
///
/// var numbers = [1, 2, 3, 4, 5]
/// var numbersCopy = numbers
/// numbers[0] = 100
/// print(numbers)
/// // Prints "[100, 2, 3, 4, 5]"
/// print(numbersCopy)
/// // Prints "[1, 2, 3, 4, 5]"
///
/// If the elements in an array are instances of a class, the semantics are the
/// same, though they might appear different at first. In this case, the
/// values stored in the array are references to objects that live outside the
/// array. If you change a reference to an object in one array, only that
/// array has a reference to the new object. However, if two arrays contain
/// references to the same object, you can observe changes to that object's
/// properties from both arrays. For example:
///
/// // An integer type with reference semantics
/// class IntegerReference {
/// var value = 10
/// }
/// var firstIntegers = [IntegerReference(), IntegerReference()]
/// var secondIntegers = firstIntegers
///
/// // Modifications to an instance are visible from either array
/// firstIntegers[0].value = 100
/// print(secondIntegers[0].value)
/// // Prints "100"
///
/// // Replacements, additions, and removals are still visible
/// // only in the modified array
/// firstIntegers[0] = IntegerReference()
/// print(firstIntegers[0].value)
/// // Prints "10"
/// print(secondIntegers[0].value)
/// // Prints "100"
///
/// Arrays, like all variable-size collections in the standard library, use
/// copy-on-write optimization. Multiple copies of an array share the same
/// storage until you modify one of the copies. When that happens, the array
/// being modified replaces its storage with a uniquely owned copy of itself,
/// which is then modified in place. Optimizations are sometimes applied that
/// can reduce the amount of copying.
///
/// This means that if an array is sharing storage with other copies, the first
/// mutating operation on that array incurs the cost of copying the array. An
/// array that is the sole owner of its storage can perform mutating
/// operations in place.
///
/// In the example below, a `numbers` array is created along with two copies
/// that share the same storage. When the original `numbers` array is
/// modified, it makes a unique copy of its storage before making the
/// modification. Further modifications to `numbers` are made in place, while
/// the two copies continue to share the original storage.
///
/// var numbers = [1, 2, 3, 4, 5]
/// var firstCopy = numbers
/// var secondCopy = numbers
///
/// // The storage for 'numbers' is copied here
/// numbers[0] = 100
/// numbers[1] = 200
/// numbers[2] = 300
/// // 'numbers' is [100, 200, 300, 4, 5]
/// // 'firstCopy' and 'secondCopy' are [1, 2, 3, 4, 5]
///
/// Bridging Between Array and NSArray
/// ==================================
///
/// When you need to access APIs that require data in an `NSArray` instance
/// instead of `Array`, use the type-cast operator (`as`) to bridge your
/// instance. For bridging to be possible, the `Element` type of your array
/// must be a class, an `@objc` protocol (a protocol imported from Objective-C
/// or marked with the `@objc` attribute), or a type that bridges to a
/// Foundation type.
///
/// The following example shows how you can bridge an `Array` instance to
/// `NSArray` to use the `write(to:atomically:)` method. In this example, the
/// `colors` array can be bridged to `NSArray` because the `colors` array's
/// `String` elements bridge to `NSString`. The compiler prevents bridging the
/// `moreColors` array, on the other hand, because its `Element` type is
/// `Optional<String>`, which does *not* bridge to a Foundation type.
///
/// let colors = ["periwinkle", "rose", "moss"]
/// let moreColors: [String?] = ["ochre", "pine"]
///
/// let url = URL(fileURLWithPath: "names.plist")
/// (colors as NSArray).write(to: url, atomically: true)
/// // true
///
/// (moreColors as NSArray).write(to: url, atomically: true)
/// // error: cannot convert value of type '[String?]' to type 'NSArray'
///
/// Bridging from `Array` to `NSArray` takes O(1) time and O(1) space if the
/// array's elements are already instances of a class or an `@objc` protocol;
/// otherwise, it takes O(*n*) time and space.
///
/// When the destination array's element type is a class or an `@objc`
/// protocol, bridging from `NSArray` to `Array` first calls the `copy(with:)`
/// (`- copyWithZone:` in Objective-C) method on the array to get an immutable
/// copy and then performs additional Swift bookkeeping work that takes O(1)
/// time. For instances of `NSArray` that are already immutable, `copy(with:)`
/// usually returns the same array in O(1) time; otherwise, the copying
/// performance is unspecified. If `copy(with:)` returns the same array, the
/// instances of `NSArray` and `Array` share storage using the same
/// copy-on-write optimization that is used when two instances of `Array`
/// share storage.
///
/// When the destination array's element type is a nonclass type that bridges
/// to a Foundation type, bridging from `NSArray` to `Array` performs a
/// bridging copy of the elements to contiguous storage in O(*n*) time. For
/// example, bridging from `NSArray` to `Array<Int>` performs such a copy. No
/// further bridging is required when accessing elements of the `Array`
/// instance.
///
/// - Note: The `ContiguousArray` and `ArraySlice` types are not bridged;
/// instances of those types always have a contiguous block of memory as
/// their storage.
@frozen
@_eagerMove
public struct Array<Element>: _DestructorSafeContainer {
#if _runtime(_ObjC)
@usableFromInline
internal typealias _Buffer = _ArrayBuffer<Element>
#else
@usableFromInline
internal typealias _Buffer = _ContiguousArrayBuffer<Element>
#endif
@usableFromInline
internal var _buffer: _Buffer
/// Initialization from an existing buffer does not have "array.init"
/// semantics because the caller may retain an alias to buffer.
@inlinable
internal init(_buffer: _Buffer) {
self._buffer = _buffer
}
}
//===--- private helpers---------------------------------------------------===//
extension Array {
/// Returns `true` if the array is native and does not need a deferred
/// type check. May be hoisted by the optimizer, which means its
/// results may be stale by the time they are used if there is an
/// inout violation in user code.
@inlinable
@_semantics("array.props.isNativeTypeChecked")
@_effects(notEscaping self.**)
public // @testable
func _hoistableIsNativeTypeChecked() -> Bool {
return _buffer.arrayPropertyIsNativeTypeChecked
}
@inlinable
@_semantics("array.get_count")
@_effects(notEscaping self.**)
internal func _getCount() -> Int {
return _buffer.immutableCount
}
@inlinable
@_semantics("array.get_capacity")
@_effects(notEscaping self.**)
internal func _getCapacity() -> Int {
return _buffer.immutableCapacity
}
@inlinable
@_semantics("array.make_mutable")
@_effects(notEscaping self.**)
internal mutating func _makeMutableAndUnique() {
if _slowPath(!_buffer.beginCOWMutation()) {
_buffer = _buffer._consumeAndCreateNew()
}
}
/// Marks the end of an Array mutation.
///
/// After a call to `_endMutation` the buffer must not be mutated until a call
/// to `_makeMutableAndUnique`.
@_alwaysEmitIntoClient
@_semantics("array.end_mutation")
@_effects(notEscaping self.**)
internal mutating func _endMutation() {
_buffer.endCOWMutation()
}
/// Check that the given `index` is valid for subscripting, i.e.
/// `0 ≤ index < count`.
///
/// This function is not used anymore, but must stay in the library for ABI
/// compatibility.
@inlinable
@inline(__always)
internal func _checkSubscript_native(_ index: Int) {
_ = _checkSubscript(index, wasNativeTypeChecked: true)
}
/// Check that the given `index` is valid for subscripting, i.e.
/// `0 ≤ index < count`.
@inlinable
@_semantics("array.check_subscript")
@_effects(notEscaping self.**)
public // @testable
func _checkSubscript(
_ index: Int, wasNativeTypeChecked: Bool
) -> _DependenceToken {
#if _runtime(_ObjC)
// There is no need to do bounds checking for the non-native case because
// ObjectiveC arrays do bounds checking by their own.
// And in the native-non-type-checked case, it's also not needed to do bounds
// checking here, because it's done in ArrayBuffer._getElementSlowPath.
if _fastPath(wasNativeTypeChecked) {
_buffer._native._checkValidSubscript(index)
}
#else
_buffer._checkValidSubscript(index)
#endif
return _DependenceToken()
}
/// Check that the given `index` is valid for subscripting, i.e.
/// `0 ≤ index < count`.
///
/// - Precondition: The buffer must be uniquely referenced and native.
@_alwaysEmitIntoClient
@_semantics("array.check_subscript")
@_effects(notEscaping self.**)
internal func _checkSubscript_mutating(_ index: Int) {
_buffer._checkValidSubscriptMutating(index)
}
/// Check that the specified `index` is valid, i.e. `0 ≤ index ≤ count`.
@inlinable
@_semantics("array.check_index")
@_effects(notEscaping self.**)
internal func _checkIndex(_ index: Int) {
_precondition(index <= endIndex, "Array index is out of range")
_precondition(index >= startIndex, "Negative Array index is out of range")
}
@_semantics("array.get_element")
@_effects(notEscaping self.value**)
@_effects(escaping self.value**.class*.value** -> return.value**)
@inlinable // FIXME(inline-always)
@inline(__always)
public // @testable
func _getElement(
_ index: Int,
wasNativeTypeChecked: Bool,
matchingSubscriptCheck: _DependenceToken
) -> Element {
#if _runtime(_ObjC)
return _buffer.getElement(index, wasNativeTypeChecked: wasNativeTypeChecked)
#else
return _buffer.getElement(index)
#endif
}
@inlinable
@_semantics("array.get_element_address")
internal func _getElementAddress(_ index: Int) -> UnsafeMutablePointer<Element> {
return _buffer.firstElementAddress + index
}
}
extension Array: _ArrayProtocol {
/// The total number of elements that the array can contain without
/// allocating new storage.
///
/// Every array reserves a specific amount of memory to hold its contents.
/// When you add elements to an array and that array begins to exceed its
/// reserved capacity, the array allocates a larger region of memory and
/// copies its elements into the new storage. The new storage is a multiple
/// of the old storage's size. This exponential growth strategy means that
/// appending an element happens in constant time, averaging the performance
/// of many append operations. Append operations that trigger reallocation
/// have a performance cost, but they occur less and less often as the array
/// grows larger.
///
/// The following example creates an array of integers from an array literal,
/// then appends the elements of another collection. Before appending, the
/// array allocates new storage that is large enough store the resulting
/// elements.
///
/// var numbers = [10, 20, 30, 40, 50]
/// // numbers.count == 5
/// // numbers.capacity == 5
///
/// numbers.append(contentsOf: stride(from: 60, through: 100, by: 10))
/// // numbers.count == 10
/// // numbers.capacity == 10
@inlinable
public var capacity: Int {
return _getCapacity()
}
#if $Embedded
public typealias AnyObject = Builtin.NativeObject
#endif
/// An object that guarantees the lifetime of this array's elements.
@inlinable
public // @testable
var _owner: AnyObject? {
@inlinable // FIXME(inline-always)
@inline(__always)
get {
return _buffer.owner
}
}
/// If the elements are stored contiguously, a pointer to the first
/// element. Otherwise, `nil`.
@inlinable
public var _baseAddressIfContiguous: UnsafeMutablePointer<Element>? {
@inline(__always) // FIXME(TODO: JIRA): Hack around test failure
get { return _buffer.firstElementAddressIfContiguous }
}
}
extension Array: RandomAccessCollection, MutableCollection {
/// The index type for arrays, `Int`.
public typealias Index = Int
/// The type that represents the indices that are valid for subscripting an
/// array, in ascending order.
public typealias Indices = Range<Int>
/// The type that allows iteration over an array's elements.
public typealias Iterator = IndexingIterator<Array>
/// The position of the first element in a nonempty array.
///
/// For an instance of `Array`, `startIndex` is always zero. If the array
/// is empty, `startIndex` is equal to `endIndex`.
@inlinable
public var startIndex: Int {
return 0
}
/// The array's "past the end" position---that is, the position one greater
/// than the last valid subscript argument.
///
/// When you need a range that includes the last element of an array, use the
/// half-open range operator (`..<`) with `endIndex`. The `..<` operator
/// creates a range that doesn't include the upper bound, so it's always
/// safe to use with `endIndex`. For example:
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let i = numbers.firstIndex(of: 30) {
/// print(numbers[i ..< numbers.endIndex])
/// }
/// // Prints "[30, 40, 50]"
///
/// If the array is empty, `endIndex` is equal to `startIndex`.
@inlinable
public var endIndex: Int {
@inlinable
get {
return _getCount()
}
}
/// Returns the position immediately after the given index.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
/// - Returns: The index immediately after `i`.
@inlinable
public func index(after i: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i + 1
}
/// Replaces the given index with its successor.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
@inlinable
public func formIndex(after i: inout Int) {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
i += 1
}
/// Returns the position immediately before the given index.
///
/// - Parameter i: A valid index of the collection. `i` must be greater than
/// `startIndex`.
/// - Returns: The index immediately before `i`.
@inlinable
public func index(before i: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i - 1
}
/// Replaces the given index with its predecessor.
///
/// - Parameter i: A valid index of the collection. `i` must be greater than
/// `startIndex`.
@inlinable
public func formIndex(before i: inout Int) {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
i -= 1
}
/// Returns an index that is the specified distance from the given index.
///
/// The following example obtains an index advanced four positions from an
/// array's starting index and then prints the element at that position.
///
/// let numbers = [10, 20, 30, 40, 50]
/// let i = numbers.index(numbers.startIndex, offsetBy: 4)
/// print(numbers[i])
/// // Prints "50"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - Returns: An index offset by `distance` from the index `i`. If
/// `distance` is positive, this is the same value as the result of
/// `distance` calls to `index(after:)`. If `distance` is negative, this
/// is the same value as the result of `abs(distance)` calls to
/// `index(before:)`.
@inlinable
public func index(_ i: Int, offsetBy distance: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i + distance
}
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// The following example obtains an index advanced four positions from an
/// array's starting index and then prints the element at that position. The
/// operation doesn't require going beyond the limiting `numbers.endIndex`
/// value, so it succeeds.
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let i = numbers.index(numbers.startIndex,
/// offsetBy: 4,
/// limitedBy: numbers.endIndex) {
/// print(numbers[i])
/// }
/// // Prints "50"
///
/// The next example attempts to retrieve an index ten positions from
/// `numbers.startIndex`, but fails, because that distance is beyond the
/// index passed as `limit`.
///
/// let j = numbers.index(numbers.startIndex,
/// offsetBy: 10,
/// limitedBy: numbers.endIndex)
/// print(j)
/// // Prints "nil"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection, unless the index passed as `limit` prevents offsetting
/// beyond those bounds.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - limit: A valid index of the collection to use as a limit. If
/// `distance > 0`, `limit` has no effect if it is less than `i`.
/// Likewise, if `distance < 0`, `limit` has no effect if it is greater
/// than `i`.
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1)
@inlinable
public func index(
_ i: Int, offsetBy distance: Int, limitedBy limit: Int
) -> Int? {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
let l = limit - i
if distance > 0 ? l >= 0 && l < distance : l <= 0 && distance < l {
return nil
}
return i + distance
}
/// Returns the distance between two indices.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection. If `end` is equal to
/// `start`, the result is zero.
/// - Returns: The distance between `start` and `end`.
@inlinable
public func distance(from start: Int, to end: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return end - start
}
@inlinable
public func _failEarlyRangeCheck(_ index: Int, bounds: Range<Int>) {
// NOTE: This method is a no-op for performance reasons.
}
@inlinable
public func _failEarlyRangeCheck(_ range: Range<Int>, bounds: Range<Int>) {
// NOTE: This method is a no-op for performance reasons.
}
/// Accesses the element at the specified position.
///
/// The following example uses indexed subscripting to update an array's
/// second element. After assigning the new value (`"Butler"`) at a specific
/// position, that value is immediately available at that same position.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// streets[1] = "Butler"
/// print(streets[1])
/// // Prints "Butler"
///
/// - Parameter index: The position of the element to access. `index` must be
/// greater than or equal to `startIndex` and less than `endIndex`.
///
/// - Complexity: Reading an element from an array is O(1). Writing is O(1)
/// unless the array's storage is shared with another array or uses a
/// bridged `NSArray` instance as its storage, in which case writing is
/// O(*n*), where *n* is the length of the array.
@inlinable
public subscript(index: Int) -> Element {
get {
// This call may be hoisted or eliminated by the optimizer. If
// there is an inout violation, this value may be stale so needs to be
// checked again below.
let wasNativeTypeChecked = _hoistableIsNativeTypeChecked()
// Make sure the index is in range and wasNativeTypeChecked is
// still valid.
let token = _checkSubscript(
index, wasNativeTypeChecked: wasNativeTypeChecked)
return _getElement(
index, wasNativeTypeChecked: wasNativeTypeChecked,
matchingSubscriptCheck: token)
}
_modify {
_makeMutableAndUnique() // makes the array native, too
_checkSubscript_mutating(index)
let address = _buffer.mutableFirstElementAddress + index
defer { _endMutation() }
yield &address.pointee
}
}
/// Accesses a contiguous subrange of the array's elements.
///
/// The returned `ArraySlice` instance uses the same indices for the same
/// elements as the original array. In particular, that slice, unlike an
/// array, may have a nonzero `startIndex` and an `endIndex` that is not
/// equal to `count`. Always use the slice's `startIndex` and `endIndex`
/// properties instead of assuming that its indices start or end at a
/// particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let i = streetsSlice.firstIndex(of: "Evarts") // 4
/// print(streets[i!])
/// // Prints "Evarts"
///
/// - Parameter bounds: A range of integers. The bounds of the range must be
/// valid indices of the array.
@inlinable
public subscript(bounds: Range<Int>) -> ArraySlice<Element> {
get {
_checkIndex(bounds.lowerBound)
_checkIndex(bounds.upperBound)
return ArraySlice(_buffer: _buffer[bounds])
}
set(rhs) {
_checkIndex(bounds.lowerBound)
_checkIndex(bounds.upperBound)
// If the replacement buffer has same identity, and the ranges match,
// then this was a pinned in-place modification, nothing further needed.
if self[bounds]._buffer.identity != rhs._buffer.identity
|| bounds != rhs.startIndex..<rhs.endIndex {
self.replaceSubrange(bounds, with: rhs)
}
}
}
/// The number of elements in the array.
@inlinable
@_semantics("array.get_count")
public var count: Int {
return _getCount()
}
}
extension Array: ExpressibleByArrayLiteral {
// Optimized implementation for Array
/// Creates an array from the given array literal.
///
/// Do not call this initializer directly. It is used by the compiler
/// when you use an array literal. Instead, create a new array by using an
/// array literal as its value. To do this, enclose a comma-separated list of
/// values in square brackets.
///
/// Here, an array of strings is created from an array literal holding
/// only strings.
///
/// let ingredients = ["cocoa beans", "sugar", "cocoa butter", "salt"]
///
/// - Parameter elements: A variadic list of elements of the new array.
@inlinable
public init(arrayLiteral elements: Element...) {
self = elements
}
}
extension Array: RangeReplaceableCollection {
/// Creates a new, empty array.
///
/// This is equivalent to initializing with an empty array literal.
/// For example:
///
/// var emptyArray = Array<Int>()
/// print(emptyArray.isEmpty)
/// // Prints "true"
///
/// emptyArray = []
/// print(emptyArray.isEmpty)
/// // Prints "true"
@inlinable
@_semantics("array.init.empty")
public init() {
_buffer = _Buffer()
}
/// Creates an array containing the elements of a sequence.
///
/// You can use this initializer to create an array from any other type that
/// conforms to the `Sequence` protocol. For example, you might want to
/// create an array with the integers from 1 through 7. Use this initializer
/// around a range instead of typing all those numbers in an array literal.
///
/// let numbers = Array(1...7)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 6, 7]"
///
/// You can also use this initializer to convert a complex sequence or
/// collection type back to an array. For example, the `keys` property of
/// a dictionary isn't an array with its own storage, it's a collection
/// that maps its elements from the dictionary only when they're
/// accessed, saving the time and space needed to allocate an array. If
/// you need to pass those keys to a method that takes an array, however,
/// use this initializer to convert that list from its type of
/// `LazyMapCollection<Dictionary<String, Int>, Int>` to a simple
/// `[String]`.
///
/// func cacheImages(withNames names: [String]) {
/// // custom image loading and caching
/// }
///
/// let namedHues: [String: Int] = ["Vermillion": 18, "Magenta": 302,
/// "Gold": 50, "Cerise": 320]
/// let colorNames = Array(namedHues.keys)
/// cacheImages(withNames: colorNames)
///
/// print(colorNames)
/// // Prints "["Gold", "Cerise", "Magenta", "Vermillion"]"
///
/// - Parameter s: The sequence of elements to turn into an array.
@inlinable
public init<S: Sequence>(_ s: S) where S.Element == Element {
self = Array(
_buffer: _Buffer(
_buffer: s._copyToContiguousArray()._buffer,
shiftedToStartIndex: 0))
}
/// Creates a new array containing the specified number of a single, repeated
/// value.
///
/// Here's an example of creating an array initialized with five strings
/// containing the letter *Z*.
///
/// let fiveZs = Array(repeating: "Z", count: 5)
/// print(fiveZs)
/// // Prints "["Z", "Z", "Z", "Z", "Z"]"
///
/// - Parameters:
/// - repeatedValue: The element to repeat.
/// - count: The number of times to repeat the value passed in the
/// `repeating` parameter. `count` must be zero or greater.
@inlinable
@_semantics("array.init")
public init(repeating repeatedValue: Element, count: Int) {
var p: UnsafeMutablePointer<Element>
(self, p) = Array._allocateUninitialized(count)
for _ in 0..<count {
p.initialize(to: repeatedValue)
p += 1
}
_endMutation()
}
@inline(never)
@usableFromInline
internal static func _allocateBufferUninitialized(
minimumCapacity: Int
) -> _Buffer {
let newBuffer = _ContiguousArrayBuffer<Element>(
_uninitializedCount: 0, minimumCapacity: minimumCapacity)
return _Buffer(_buffer: newBuffer, shiftedToStartIndex: 0)
}
/// Construct an Array of `count` uninitialized elements.
@inlinable
internal init(_uninitializedCount count: Int) {
_precondition(count >= 0, "Can't construct Array with count < 0")
// Note: Sinking this constructor into an else branch below causes an extra
// Retain/Release.
_buffer = _Buffer()
if count > 0 {
// Creating a buffer instead of calling reserveCapacity saves doing an
// unnecessary uniqueness check. We disable inlining here to curb code
// growth.
_buffer = Array._allocateBufferUninitialized(minimumCapacity: count)
_buffer.mutableCount = count
}
// Can't store count here because the buffer might be pointing to the
// shared empty array.
}
/// Entry point for `Array` literal construction; builds and returns
/// an Array of `count` uninitialized elements.
@inlinable
@_semantics("array.uninitialized")
internal static func _allocateUninitialized(
_ count: Int
) -> (Array, UnsafeMutablePointer<Element>) {
let result = Array(_uninitializedCount: count)
return (result, result._buffer.firstElementAddress)
}
/// Returns an Array of `count` uninitialized elements using the
/// given `storage`, and a pointer to uninitialized memory for the
/// first element.
///
/// - Precondition: `storage is _ContiguousArrayStorage`.
@inlinable
@_semantics("array.uninitialized")
@_effects(escaping storage => return.0.value**)
@_effects(escaping storage.class*.value** => return.0.value**.class*.value**)
@_effects(escaping storage.class*.value** => return.1.value**)
internal static func _adoptStorage(
_ storage: __owned _ContiguousArrayStorage<Element>, count: Int
) -> (Array, UnsafeMutablePointer<Element>) {
let innerBuffer = _ContiguousArrayBuffer<Element>(
count: count,
storage: storage)
return (
Array(
_buffer: _Buffer(_buffer: innerBuffer, shiftedToStartIndex: 0)),
innerBuffer.firstElementAddress)
}
/// Entry point for aborting literal construction: deallocates
/// an Array containing only uninitialized elements.
@inlinable
internal mutating func _deallocateUninitialized() {
// Set the count to zero and just release as normal.
// Somewhat of a hack.
_buffer.mutableCount = 0
}
//===--- basic mutations ------------------------------------------------===//
/// Reserves enough space to store the specified number of elements.
///