-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
133 lines (107 loc) · 5.96 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
from sklearn.metrics import precision_score, recall_score
def main():
st.title("Binary Classification")
st.sidebar.title("Binary Classification Web App")
st.markdown("Are your mushrooms edible or posinous")
st.sidebar.markdown("Are your mushrooms edible or posinous")
#unless the name of function or input ot argument change,
#we can simply cash the output to disk and use the output from disk
#important for large dataset
@st.cache(persist=True)
def load_data():
data=pd.read_csv("/home/rhyme/Desktop/Project/mushrooms.csv")
label=LabelEncoder()
for col in data.columns:
data[col]= label.fit_transform(data[col])
return data
@st.cache(persist=True)
def split(df):
y=df.type
x=df.drop(columns=['type'])
x_train, x_test , y_train, y_test= train_test_split(x, y, test_size=0.3,random_state=0)
return x_train, x_test, y_train, y_test
#metrics to understand the evaluation
def plot_metrics(metrics_list):
if 'Confusion matrix' in metrics_list:
st.subheader("Confusion Matrix")
plot_confusion_matrix(model, x_test, y_test, display_labels=class_names)
st.pyplot()
#we need high recall for model
if 'ROC Curve' in metrics_list:
st.subheader("ROC Curve")
plot_roc_curve(model, x_test, y_test)
st.pyplot()
if 'Precision-Recall Curve' in metrics_list:
st.subheader("Precision-Recall Curve")
plot_precision_recall_curve(model, x_test, y_test)
st.pyplot()
df=load_data()
x_train, x_test, y_train, y_test=split(df)
class_names=['edible','poisinous']
st.sidebar.subheader('choose Classifier')
classifier=st.sidebar.selectbox("Classifier", ("Support Vector Machine (SVM)","Logistic Regression","Random Forest"))
#once the selection of classifier is seletced then only hyperparamters will be shown
if classifier=='Support Vector Machine (SVM)':
st.sidebar.subheader("Model Hyperparameters")
C=st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0, step =0.01, key='C')
kernel=st.sidebar.radio("kernel", ("rbf","linear"), key ="linear")
gamma= st.sidebar.radio("Gamma (Kernel Coefficient", ("scale","auto"),key='gamma')
metrics=st.sidebar.multiselect("what metrics to plot?",('Confusion matrix','ROC Curve','Precision-Recall Curve'))
if st.sidebar.button("Classify",key='classify'):
st.subheader("Support Vector Machine (SVM")
model=SVC( C=C, kernel=kernel,gamma=gamma)
model.fit(x_train, y_train)
accuracy = model.score( x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(y_test, y_pred, labels= class_names).round(2))
st.write("Recall: ",recall_score(y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
if classifier=='Logistic Regression':
st.sidebar.subheader("Model Hyperparameters")
C=st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0, step =0.01, key='C')
max_iter=st.sidebar.slider("Maximum Number of Iterations", 100, 500, key= 'max_iter')
#Ask user what evaluation metrics you want to see plotted out on web app
metrics=st.sidebar.multiselect("what metrics to plot?",('Confusion matrix','ROC Curve','Precision-Recall Curve'))
if st.sidebar.button("Classify", key="classify"):
st.subheader("Logistic Regression")
model=LogisticRegression( C=C, max_iter=max_iter)
model.fit(x_train, y_train)
accuracy = model.score( x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(y_test, y_pred, labels= class_names).round(2))
st.write("Recall: ",recall_score(y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
if classifier=='Random Forest':
st.sidebar.subheader("Model Hyperparameters")
n_estimators=st.sidebar.number_input("The numbers of tress in the forest", 100, 5000, steps=10, key='n_estimators')
max_depth= st.sidebar.number_input("the maximum depth of the tree",1, 20, step= 1, key='max_depth')
bootstrap = st.sidebar.radio("Bootstrap samples when building trees", ('True','False'),key='bootstrap')
#Ask user what evaluation metrics you want to see plotted out on web app
metrics=st.sidebar.multiselect("what metrics to plot?",('Confusion matrix','ROC Curve','Precision-Recall Curve'))
if st.sidebar.button("Classify",key='classify'):
st.subheader("RandomForest")
model=RandomForestClassifier( n_estimators=n_estimators, max_depth=max_depth,bootstrap=bootstrap, n_jobs=-1)
model.fit(x_train, y_train)
accuracy = model.score( x_test, y_test)
y_pred = model.predict(x_test)
st.write("Accuracy: ", accuracy.round(2))
st.write("Precision: ", precision_score(y_test, y_pred, labels= class_names).round(2))
st.write("Recall: ",recall_score(y_test, y_pred, labels=class_names).round(2))
plot_metrics(metrics)
#Adding checkbox to sidebar
if st.sidebar.checkbox("show raw data", False):
st.subheader("Mushroom data")
st.write(df)
if __name__ == '__main__':
main()