forked from Tramac/Fast-SCNN-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
200 lines (172 loc) · 8.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import argparse
import time
import shutil
import torch
import torch.utils.data as data
import torch.backends.cudnn as cudnn
from torchvision import transforms
from data_loader import get_segmentation_dataset
from models.fast_scnn import get_fast_scnn
from utils.loss import MixSoftmaxCrossEntropyLoss, MixSoftmaxCrossEntropyOHEMLoss
from utils.lr_scheduler import LRScheduler
from utils.metric import SegmentationMetric
def parse_args():
"""Training Options for Segmentation Experiments"""
parser = argparse.ArgumentParser(description='Fast-SCNN on PyTorch')
# model and dataset
parser.add_argument('--model', type=str, default='fast_scnn',
help='model name (default: fast_scnn)')
parser.add_argument('--dataset', type=str, default='citys',
help='dataset name (default: citys)')
parser.add_argument('--base-size', type=int, default=1024,
help='base image size')
parser.add_argument('--crop-size', type=int, default=768,
help='crop image size')
parser.add_argument('--train-split', type=str, default='train',
help='dataset train split (default: train)')
# training hyper params
parser.add_argument('--aux', action='store_true', default=False,
help='Auxiliary loss')
parser.add_argument('--aux-weight', type=float, default=0.4,
help='auxiliary loss weight')
parser.add_argument('--epochs', type=int, default=160, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--start_epoch', type=int, default=0,
metavar='N', help='start epochs (default:0)')
parser.add_argument('--batch-size', type=int, default=2,
metavar='N', help='input batch size for training (default: 12)')
parser.add_argument('--lr', type=float, default=1e-2, metavar='LR',
help='learning rate (default: 1e-2)')
parser.add_argument('--momentum', type=float, default=0.9,
metavar='M', help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=1e-4,
metavar='M', help='w-decay (default: 1e-4)')
# checking point
parser.add_argument('--resume', type=str, default=None,
help='put the path to resuming file if needed')
parser.add_argument('--save-folder', default='./weights',
help='Directory for saving checkpoint models')
# evaluation only
parser.add_argument('--eval', action='store_true', default=False,
help='evaluation only')
parser.add_argument('--no-val', action='store_true', default=True,
help='skip validation during training')
# the parser
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
args.device = device
print(args)
return args
class Trainer(object):
def __init__(self, args):
self.args = args
# image transform
input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
])
# dataset and dataloader
data_kwargs = {'transform': input_transform, 'base_size': args.base_size, 'crop_size': args.crop_size}
train_dataset = get_segmentation_dataset(args.dataset, split=args.train_split, mode='train', **data_kwargs)
val_dataset = get_segmentation_dataset(args.dataset, split='val', mode='val', **data_kwargs)
self.train_loader = data.DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True)
self.val_loader = data.DataLoader(dataset=val_dataset,
batch_size=1,
shuffle=False)
# create network
self.model = get_fast_scnn(dataset=args.dataset, aux=args.aux)
if torch.cuda.device_count() > 1:
self.model = torch.nn.DataParallel(self.model, device_ids=[0, 1, 2])
self.model.to(args.device)
# resume checkpoint if needed
if args.resume:
if os.path.isfile(args.resume):
name, ext = os.path.splitext(args.resume)
assert ext == '.pkl' or '.pth', 'Sorry only .pth and .pkl files supported.'
print('Resuming training, loading {}...'.format(args.resume))
self.model.load_state_dict(torch.load(args.resume, map_location=lambda storage, loc: storage))
# create criterion
self.criterion = MixSoftmaxCrossEntropyOHEMLoss(aux=args.aux, aux_weight=args.aux_weight,
ignore_index=-1).to(args.device)
# optimizer
self.optimizer = torch.optim.SGD(self.model.parameters(),
lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# lr scheduling
self.lr_scheduler = LRScheduler(mode='poly', base_lr=args.lr, nepochs=args.epochs,
iters_per_epoch=len(self.train_loader), power=0.9)
# evaluation metrics
self.metric = SegmentationMetric(train_dataset.num_class)
self.best_pred = 0.0
def train(self):
cur_iters = 0
start_time = time.time()
for epoch in range(self.args.start_epoch, self.args.epochs):
self.model.train()
for i, (images, targets) in enumerate(self.train_loader):
cur_lr = self.lr_scheduler(cur_iters)
for param_group in self.optimizer.param_groups:
param_group['lr'] = cur_lr
images = images.to(self.args.device)
targets = targets.to(self.args.device)
outputs = self.model(images)
loss = self.criterion(outputs, targets)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
cur_iters += 1
if cur_iters % 10 == 0:
print('Epoch: [%2d/%2d] Iter [%4d/%4d] || Time: %4.4f sec || lr: %.8f || Loss: %.4f' % (
epoch, args.epochs, i + 1, len(self.train_loader),
time.time() - start_time, cur_lr, loss.item()))
if self.args.no_val:
# save every epoch
save_checkpoint(self.model, self.args, is_best=False)
else:
self.validation(epoch)
save_checkpoint(self.model, self.args, is_best=False)
def validation(self, epoch):
is_best = False
self.metric.reset()
self.model.eval()
for i, (image, target) in enumerate(self.val_loader):
image = image.to(self.args.device)
outputs = self.model(image)
pred = torch.argmax(outputs[0], 1)
pred = pred.cpu().data.numpy()
self.metric.update(pred, target.numpy())
pixAcc, mIoU = self.metric.get()
print('Epoch %d, Sample %d, validation pixAcc: %.3f%%, mIoU: %.3f%%' % (
epoch, i + 1, pixAcc * 100, mIoU * 100))
new_pred = (pixAcc + mIoU) / 2
if new_pred > self.best_pred:
is_best = True
self.best_pred = new_pred
save_checkpoint(self.model, self.args, is_best)
def save_checkpoint(model, args, is_best=False):
"""Save Checkpoint"""
directory = os.path.expanduser(args.save_folder)
if not os.path.exists(directory):
os.makedirs(directory)
filename = '{}_{}.pth'.format(args.model, args.dataset)
save_path = os.path.join(directory, filename)
torch.save(model.state_dict(), save_path)
if is_best:
best_filename = '{}_{}_best_model.pth'.format(args.model, args.dataset)
best_filename = os.path.join(directory, best_filename)
shutil.copyfile(filename, best_filename)
if __name__ == '__main__':
args = parse_args()
trainer = Trainer(args)
if args.eval:
print('Evaluation model: ', args.resume)
trainer.validation(args.start_epoch)
else:
print('Starting Epoch: %d, Total Epochs: %d' % (args.start_epoch, args.epochs))
trainer.train()