This repository has been archived by the owner on Feb 2, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
int.go
973 lines (893 loc) · 22.8 KB
/
int.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements signed multi-precision integers.
package gmp
// FIXME could we use Go's allocator (gmp can use a custom allocator)
// instead of using runtime.SetFinalizer to manage memory?
/*
#cgo LDFLAGS: -lgmp
#include <gmp.h>
#include <stdlib.h>
// gmp 5.0.0+ changed the type of the 3rd argument to mp_bitcnt_t,
// so, to support older versions, we wrap these two functions.
void _mpz_mul_2exp(mpz_ptr a, mpz_ptr b, unsigned long n) {
mpz_mul_2exp(a, b, n);
}
void _mpz_div_2exp(mpz_ptr a, mpz_ptr b, unsigned long n) {
mpz_div_2exp(a, b, n);
}
unsigned int _mpz_tstbit(mpz_ptr a, unsigned long n) {
return mpz_tstbit(a, n);
}
void _mpz_clrbit(mpz_ptr a, unsigned long n) {
mpz_clrbit(a, n);
}
void _mpz_setbit(mpz_ptr a, unsigned long n) {
mpz_setbit(a, n);
}
// Macros made into functions
int _mpz_sgn(mpz_t op) {
return mpz_sgn(op);
}
int _mpz_even_p(mpz_t op) {
return mpz_even_p(op);
}
*/
import "C"
import (
"errors"
"fmt"
"io"
"math/rand"
"runtime"
"strings"
"unicode"
"unsafe"
)
// Some definited Ints for internal use only
var (
_Int0 = NewInt(0)
_Int1 = NewInt(1)
_Int10 = NewInt(10)
)
// mpz holds the gmp type. This is wrapped in a go type so we can
// attach initializers to it.
type mpz struct {
i C.mpz_t
}
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
*mpz
}
// Finalizer - release the memory allocated to the mpz
func intFinalize(z *mpz) {
runtime.SetFinalizer(z, nil)
C.mpz_clear(&z.i[0])
}
// initialized returns whether z has had doinit() called on it
func (z *Int) initialized() bool {
return z.mpz != nil
}
// Int promises that the zero value is a 0, but in gmp
// the zero value is a crash. To bridge the gap, the
// init bool says whether this is a valid gmp value.
// doinit initializes z.i if it needs it.
func (z *Int) doinit() {
if z.initialized() {
return
}
z.mpz = new(mpz)
C.mpz_init(&z.i[0])
runtime.SetFinalizer(z.mpz, intFinalize)
}
// Clear the allocated space used by the number
//
// This normally happens on a runtime.SetFinalizer call, but if you
// want immediate deallocation you can call it.
//
// NB This is not part of big.Int
func (z *Int) Clear() {
intFinalize(z.mpz)
z.mpz = nil
}
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
//
func (z *Int) Sign() int {
z.doinit()
return int(C._mpz_sgn(&z.i[0]))
}
// SetInt64 sets z to x and returns z.
func (z *Int) SetInt64(x int64) *Int {
z.doinit()
// Test for truncation
y := C.long(x)
if int64(y) == x {
C.mpz_set_si(&z.i[0], y)
} else {
negative := false
if x < 0 {
x = -x
negative = true
}
C.mpz_import(&z.i[0], 1, 0, 8, 0, 0, unsafe.Pointer(&x))
if negative {
C.mpz_neg(&z.i[0], &z.i[0])
}
}
return z
}
// SetUint64 sets z to x and returns z.
func (z *Int) SetUint64(x uint64) *Int {
z.doinit()
// Test for truncation
y := C.ulong(x)
if uint64(y) == x {
C.mpz_set_ui(&z.i[0], y)
} else {
C.mpz_import(&z.i[0], 1, 0, 8, 0, 0, unsafe.Pointer(&x))
}
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt(x int64) *Int {
return new(Int).SetInt64(x)
}
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
z.doinit()
C.mpz_set(&z.i[0], &x.i[0])
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
// func (z *Int) Bits() []Word {
// // FIXME not implemented
// return nil
// }
// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
// func (z *Int) SetBits(abs []Word) *Int {
// // FIXME not implemented
// return nil
// }
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
x.doinit()
z.doinit()
C.mpz_abs(&z.i[0], &x.i[0])
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
x.doinit()
z.doinit()
C.mpz_neg(&z.i[0], &x.i[0])
return z
}
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_add(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Sub sets z to the difference x-y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_sub(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_mul(&z.i[0], &x.i[0], &y.i[0])
return z
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
switch {
case a > b:
return z.SetInt64(1) // empty range
case a <= 0 && b >= 0:
return z.SetInt64(0) // range includes 0
}
// a <= b && (b < 0 || a > 0)
// Can use gmp factorial routine if a = 1 and b >= 1
if a == 1 && b >= 1 {
C.mpz_fac_ui(&z.i[0], C.ulong(b))
} else {
// Slow
z.SetInt64(a)
for i := a + 1; i <= b; i++ {
C.mpz_mul_si(&z.i[0], &z.i[0], C.long(i))
}
}
return z
}
// Binomial sets z to the binomial coefficient of (n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
var a, b Int
a.MulRange(n-k+1, n)
b.MulRange(1, k)
return z.Quo(&a, &b)
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_tdiv_q(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_tdiv_r(&z.i[0], &x.i[0], &y.i[0])
return z
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
// See DivMod for Euclidean division and modulus (unlike Go).
//
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
x.doinit()
y.doinit()
r.doinit()
z.doinit()
C.mpz_tdiv_qr(&z.i[0], &r.i[0], &x.i[0], &y.i[0])
return z, r
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
switch y.Sign() {
case 1:
C.mpz_fdiv_q(&z.i[0], &x.i[0], &y.i[0])
case -1:
C.mpz_cdiv_q(&z.i[0], &x.i[0], &y.i[0])
case 0:
panic("Division by zero")
}
return z
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
switch y.Sign() {
case 1:
C.mpz_fdiv_r(&z.i[0], &x.i[0], &y.i[0])
case -1:
C.mpz_cdiv_r(&z.i[0], &x.i[0], &y.i[0])
case 0:
panic("Division by zero")
}
return z
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |q|
//
// (See Raymond T. Boute, ``The Euclidean definition of the functions
// div and mod''. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
//
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
x.doinit()
y.doinit()
m.doinit()
z.doinit()
switch y.Sign() {
case 1:
C.mpz_fdiv_qr(&z.i[0], &m.i[0], &x.i[0], &y.i[0])
case -1:
C.mpz_cdiv_qr(&z.i[0], &m.i[0], &x.i[0], &y.i[0])
case 0:
panic("Division by zero")
}
return z, m
}
// Cmp compares z and y and returns:
//
// -1 if z < y
// 0 if z == y
// +1 if z > y
//
func (z *Int) Cmp(y *Int) (r int) {
z.doinit()
y.doinit()
r = int(C.mpz_cmp(&z.i[0], &y.i[0]))
if r < 0 {
r = -1
} else if r > 0 {
r = 1
}
return
}
// string returns z in the base given
func (z *Int) string(base int) string {
if z == nil {
return "<nil>"
}
z.doinit()
p := C.mpz_get_str(nil, C.int(base), &z.i[0])
s := C.GoString(p)
C.free(unsafe.Pointer(p))
return s
}
// String returns the decimal representation of z.
func (z *Int) String() string {
return z.string(10)
}
// Convert rune into base
//
// Note gmp says -ve bases make upper case
func baseForRune(ch rune) int {
switch ch {
case 'b':
return 2
case 'o':
return 8
case 'd', 's', 'v':
return 10
case 'x':
return 16
case 'X':
return -16
}
return 0 // unknown format
}
// write count copies of text to s
func writeMultiple(s fmt.State, text string, count int) {
if len(text) > 0 {
b := []byte(text)
for ; count > 0; count-- {
s.Write(b)
}
}
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
// Also supported are the full suite of package fmt's format
// verbs for integral types, including '+', '-', and ' '
// for sign control, '#' for leading zero in octal and for
// hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
// respectively, specification of minimum digits precision,
// output field width, space or zero padding, and left or
// right justification.
//
func (z *Int) Format(s fmt.State, ch rune) {
base := baseForRune(ch)
// special cases
switch {
case base == 0:
// unknown format
fmt.Fprintf(s, "%%!%c(gmp.Int=%s)", ch, z.String())
return
case z == nil:
fmt.Fprint(s, "<nil>")
return
}
// determine sign character
sign := ""
switch {
case z.Sign() < 0:
sign = "-"
case s.Flag('+'): // supersedes ' ' when both specified
sign = "+"
case s.Flag(' '):
sign = " "
}
// determine prefix characters for indicating output base
prefix := ""
if s.Flag('#') {
switch ch {
case 'o': // octal
prefix = "0"
case 'x': // hexadecimal
prefix = "0x"
case 'X':
prefix = "0X"
}
}
// determine digits with base set by len(cs) and digit characters from cs
digits := z.string(base)
if digits[0] == '-' {
digits = digits[1:]
}
// number of characters for the three classes of number padding
var left int // space characters to left of digits for right justification ("%8d")
var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
var right int // space characters to right of digits for left justification ("%-8d")
// determine number padding from precision: the least number of digits to output
precision, precisionSet := s.Precision()
if precisionSet {
switch {
case len(digits) < precision:
zeroes = precision - len(digits) // count of zero padding
case digits == "0" && precision == 0:
return // print nothing if zero value (z == 0) and zero precision ("." or ".0")
}
}
// determine field pad from width: the least number of characters to output
length := len(sign) + len(prefix) + zeroes + len(digits)
if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
switch d := width - length; {
case s.Flag('-'):
// pad on the right with spaces; supersedes '0' when both specified
right = d
case s.Flag('0') && !precisionSet:
// pad with zeroes unless precision also specified
zeroes = d
default:
// pad on the left with spaces
left = d
}
}
// print number as [left pad][sign][prefix][zero pad][digits][right pad]
writeMultiple(s, " ", left)
writeMultiple(s, sign, 1)
writeMultiple(s, prefix, 1)
writeMultiple(s, "0", zeroes)
writeMultiple(s, digits, 1)
writeMultiple(s, " ", right)
}
// Scan is a support routine for fmt.Scanner; it sets z to the value of
// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
func (z *Int) Scan(s fmt.ScanState, ch rune) error {
s.SkipSpace() // skip leading space characters
base := 0
switch ch {
case 'b':
base = 2
case 'o':
base = 8
case 'd':
base = 10
case 'x', 'X':
base = 16
case 's', 'v':
// let scan determine the base
default:
return errors.New("Int.Scan: invalid verb")
}
charset := "0123456789abcdef"
if base != 0 {
charset = charset[:base]
}
// Read the number into in
in := make([]byte, 0, 16)
var err error
var n int
for {
ch, n, err = s.ReadRune()
if err == io.EOF {
break
}
if err != nil {
return err
}
if n > 1 {
// Wide character - must be the end
s.UnreadRune()
break
}
ch = unicode.ToLower(ch)
if len(in) == 0 {
if ch == '+' {
// Skip leading + as gmp doesn't understand them
continue
}
if ch == '-' {
goto ok
}
}
if len(in) == 1 && base == 0 {
if ch == 'b' || ch == 'x' {
goto ok
}
}
if !strings.ContainsRune(charset, ch) {
// Bad character - end
s.UnreadRune()
break
}
ok:
in = append(in, byte(ch))
}
// Use GMP to convert it as it is very efficient for large numbers
z.doinit()
// null terminate for C
in = append(in, 0)
if C.mpz_set_str(&z.i[0], (*C.char)(unsafe.Pointer(&in[0])), C.int(base)) < 0 {
return errors.New("Int.Scan: failed")
}
return nil
}
// Int64 returns the int64 representation of z.
// If z cannot be represented in an int64, the result is undefined.
func (z *Int) Int64() (y int64) {
if !z.initialized() {
return
}
if C.mpz_fits_slong_p(&z.i[0]) != 0 {
return int64(C.mpz_get_si(&z.i[0]))
}
// Undefined result if > 64 bits
if z.BitLen() > 64 {
return
}
C.mpz_export(unsafe.Pointer(&y), nil, -1, 8, 0, 0, &z.i[0])
if z.Sign() < 0 {
y = -y
}
return
}
// Uint64 returns the uint64 representation of z.
// If z cannot be represented in a uint64, the result is undefined.
func (z *Int) Uint64() (y uint64) {
if !z.initialized() {
return
}
if C.mpz_fits_ulong_p(&z.i[0]) != 0 {
return uint64(C.mpz_get_ui(&z.i[0]))
}
// Undefined result if > 64 bits
if z.BitLen() > 64 {
return
}
C.mpz_export(unsafe.Pointer(&y), nil, -1, 8, 0, 0, &z.i[0])
return
}
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value from 2 through MaxBase. If the base
// is 0, the string prefix determines the actual conversion base. A prefix of
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
func (z *Int) SetString(s string, base int) (*Int, bool) {
z.doinit()
if base != 0 && (base < 2 || base > 36) {
return nil, false
}
// Skip leading + as mpz_set_str doesn't understand them
if len(s) > 1 && s[0] == '+' {
s = s[1:]
}
// mpz_set_str incorrectly parses "0x" and "0b" as valid
if base == 0 && len(s) == 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X' || s[1] == 'b' || s[1] == 'B') {
return nil, false
}
p := C.CString(s)
defer C.free(unsafe.Pointer(p))
if C.mpz_set_str(&z.i[0], p, C.int(base)) < 0 {
return nil, false
}
return z, true // err == io.EOF => scan consumed all of s
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
z.doinit()
if len(buf) == 0 {
z.SetInt64(0)
} else {
C.mpz_import(&z.i[0], C.size_t(len(buf)), 1, 1, 1, 0, unsafe.Pointer(&buf[0]))
}
return z
}
// Bytes returns the absolute value of z as a big-endian byte slice.
func (z *Int) Bytes() []byte {
b := make([]byte, 1+(z.BitLen()+7)/8)
n := C.size_t(len(b))
C.mpz_export(unsafe.Pointer(&b[0]), &n, 1, 1, 1, 0, &z.i[0])
return b[0:n]
}
// BitLen returns the length of the absolute value of z in bits.
// The bit length of 0 is 0.
func (z *Int) BitLen() int {
z.doinit()
if z.Sign() == 0 {
return 0
}
return int(C.mpz_sizeinbase(&z.i[0], 2))
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If y <= 0, the result is 1; if m == nil or m == 0, z = x**y.
// See Knuth, volume 2, section 4.6.3.
func (z *Int) Exp(x, y, m *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
if y.Sign() <= 0 {
z.SetInt64(1)
return z
}
if m == nil || m.Sign() == 0 {
C.mpz_pow_ui(&z.i[0], &x.i[0], C.mpz_get_ui(&y.i[0]))
} else {
m.doinit()
C.mpz_powm(&z.i[0], &x.i[0], &y.i[0], &m.i[0])
}
return z
}
// GCD sets z to the greatest common divisor of a and b, which both must
// be > 0, and returns z.
// If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
// If either a or b is <= 0, GCD sets z = x = y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
z.doinit()
a.doinit()
b.doinit()
if a.Sign() <= 0 || b.Sign() <= 0 {
z.SetInt64(0)
if x != nil {
x.SetInt64(0)
}
if y != nil {
y.SetInt64(0)
}
} else if x == nil && y == nil {
C.mpz_gcd(&z.i[0], &a.i[0], &b.i[0])
} else {
if x != nil {
x.doinit()
} else {
x = _Int0
}
if y != nil {
y.doinit()
} else {
y = _Int0
}
C.mpz_gcdext(&z.i[0], &x.i[0], &y.i[0], &a.i[0], &b.i[0])
}
return z
}
// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
// If it returns true, z is prime with probability 1 - 1/4^n.
// If it returns false, z is not prime.
func (z *Int) ProbablyPrime(n int) bool {
z.doinit()
return int(C.mpz_probab_prime_p(&z.i[0], C.int(n))) > 0
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
z.doinit()
// Get rid of n <= 0 case
if n.Sign() <= 0 {
z.SetInt64(0)
return z
}
// Make a copy of n if aliased
t := n
aliased := false
if n == z {
aliased = true
t = new(Int).Set(n)
}
// Work out bit sizes and masks
bits := n.BitLen() // >= 1
nwords := (bits + 31) / 32 // >= 1
bitLengthOfMSW := uint(bits % 32)
if bitLengthOfMSW == 0 {
bitLengthOfMSW = 32
}
mask := uint32((1 << bitLengthOfMSW) - 1)
words := make([]uint32, nwords)
for {
// Make a most significant first array of random bytes
for i := 0; i < nwords; i++ {
words[i] = rnd.Uint32()
}
// Mask out the top bits so this is only just bigger than n
words[0] &= mask
C.mpz_import(&z.i[0], C.size_t(len(words)), 1, 4, 0, 0, unsafe.Pointer(&words[0]))
// Exit if z < n - should take ~1.5 iterations of loop on average
if z.Cmp(t) < 0 {
break
}
}
if aliased {
t.Clear()
}
return z
}
// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
// p is a prime) and returns z.
func (z *Int) ModInverse(g, p *Int) *Int {
g.doinit()
p.doinit()
z.doinit()
C.mpz_invert(&z.i[0], &g.i[0], &p.i[0])
return z
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
x.doinit()
z.doinit()
C._mpz_mul_2exp(&z.i[0], &x.i[0], C.ulong(n))
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
x.doinit()
z.doinit()
C._mpz_div_2exp(&z.i[0], &x.i[0], C.ulong(n))
return z
}
// Bit returns the value of the i'th bit of z. That is, it
// returns (z>>i)&1. The bit index i must be >= 0.
func (z *Int) Bit(i int) uint {
z.doinit()
return uint(C._mpz_tstbit(&z.i[0], C.ulong(i)))
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if b is 1 SetBit sets z = x | (1 << i);
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
if z != x {
z.Set(x)
}
if b == 0 {
C._mpz_clrbit(&z.i[0], C.ulong(i))
} else {
C._mpz_setbit(&z.i[0], C.ulong(i))
}
return z
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_and(&z.i[0], &x.i[0], &y.i[0])
return z
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
t := z
aliased := false
if z == y || z == x {
aliased = true
t = new(Int).Set(y)
}
C.mpz_com(&t.i[0], &y.i[0])
C.mpz_and(&z.i[0], &x.i[0], &t.i[0])
if aliased {
t.Clear()
}
return z
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_ior(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_xor(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
x.doinit()
z.doinit()
C.mpz_com(&z.i[0], &x.i[0])
return z
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const intGobVersion byte = 1
// GobEncode implements the gob.GobEncoder interface.
func (z *Int) GobEncode() ([]byte, error) {
buf := make([]byte, 2+(z.BitLen()+7)/8)
n := C.size_t(len(buf) - 1)
C.mpz_export(unsafe.Pointer(&buf[1]), &n, 1, 1, 1, 0, &z.i[0])
b := intGobVersion << 1 // make space for sign bit
if z.Sign() < 0 {
b |= 1
}
buf[0] = b
return buf[:n+1], nil
}
// GobDecode implements the gob.GobDecoder interface.
func (z *Int) GobDecode(buf []byte) error {
if len(buf) == 0 {
return errors.New("Int.GobDecode: no data")
}
b := buf[0]
if b>>1 != intGobVersion {
return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1)
}
z.SetBytes(buf[1:])
if b&1 != 0 {
C.mpz_neg(&z.i[0], &z.i[0])
}
return nil
}
// MarshalJSON implements the json.Marshaler interface.
func (z *Int) MarshalJSON() ([]byte, error) {
// TODO(gri): get rid of the []byte/string conversions
return []byte(z.String()), nil
}
// UnmarshalJSON implements the json.Unmarshaler interface.
func (z *Int) UnmarshalJSON(x []byte) error {
// TODO(gri): get rid of the []byte/string conversions
_, ok := z.SetString(string(x), 0)
if !ok {
return fmt.Errorf("math/big: cannot unmarshal %s into a *gmp.Int", x)
}
return nil
}
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {
x.doinit()
y.doinit()
if C._mpz_sgn(&y.i[0]) == 0 || C._mpz_even_p(&y.i[0]) != 0 {
panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
}
return int(C.mpz_jacobi(&x.i[0], &y.i[0]))
}