forked from MoZeWei/moTuner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrocblas_tool.hip
892 lines (789 loc) · 38.5 KB
/
rocblas_tool.hip
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
#include "hip/hip_runtime.h"
#include <stdio.h>
#include <stdlib.h>
#include<chrono>
#include<iostream>
#include <hip/hip_runtime.h>
#include <rocblas.h>
#include "hip/hip_fp16.h"
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <fstream>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include<math.h>
/*
Hardware Info
SM的数量:120
每个线程块的共享内存大小:64 KB
每个线程块的最大线程数:1024
每个SM的最大线程数:2560
每个SM的最大线程束数:80 //Assume 32 threads in a wrap
/mnt/sdb1/public/yum/env/v1/spack/opt/spack/linux-centos7-zen/gcc-8.5.0/rocblas-4.3.1-fhdrqvdjmkc7jrobubifh2mgvg7se4rc
*/
//TO.DO.: FIX the call arguments of rocblas_gemm_ex
//forward declare
rocblas_status mzw_faster_mul(rocblas_handle blas_handle, rocblas_operation Trans_A, rocblas_operation Trans_B, int m, int n, int k, void * alpha_addr,
void * device_fp32MatrixA, rocblas_datatype Atype, int ldA, void * device_fp32MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * device_fp32MatrixC, rocblas_datatype Ctype, int ldC, void * device_fp32MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags,
void * memory_pool, int p1, int p2, int p3);
void mzw_Result_Check_Record_Performance(void * A, void * B, int m, int n, int p1, int p2, int p3, int GEMM_ID, int runtime_counter, float running_time, char * file_path, int flag);
bool mzw_WriteFile(const std::string &filePath, const void *buffer, size_t size);
char *mzw_ReadFile(const std::string &filePath, size_t &fileSize, void *buffer, size_t bufferSize);
#define HIP_CHECK(x) \
if(x != hipSuccess) \
{ \
std::cout<<"Wrong HIP"<<std::endl; \
std::cout<<mzw_check_hip_error(x)<<std::endl; \
exit(1); \
}
#define ROC_BLAS_CHECK(x) \
if(x != rocblas_status_success) \
{ \
std::cout<<"Wrong ROCBLAS: "; \
std::cout<<mzw_check_rocblas_error(x)<<std::endl; \
exit(1); \
}
void mzw_output_dimension_file(int M, int N, int K, char * path)
{
//std::string path = "/mnt/data/home/mzw/workspace/test_space/llvm_test/mark_test/dimension_file.txt";
std::fstream fs(path,std::ios::app);
if(!fs)
{
std::cout<<"Cant open the dimension file"<<std::endl;
exit(1);
}
else
{
fs<<M<<" "<<N<<" "<<K<<std::endl;
fs.close();
}
}
void mzw_output_FuncID_file(int id, char * path)
{
//std::string path = "/mnt/data/home/mzw/workspace/test_space/llvm_test/mark_test/FuncID_file.txt";
std::fstream fs(path,std::ios::app);
if(!fs)
{
std::cout<<"Cant open the funcID file"<<std::endl;
exit(1);
}
else
{
fs<<id<<std::endl;
fs.close();
}
}
//TO.DO.: Does it make sense to judge dependency according to printed in-time address?
//void mzw_output_matrix_mem_addr_file(int id, )
//This is used when reading the old single_pass_file
void mzw_flush_single_pass_file(char * file_path)
{
std::fstream fs(file_path,std::ios::out | std::ios::trunc);
if(!fs)
{
std::cout<<"Cant open the funcID file"<<std::endl;
exit(1);
}
else
{
fs<<""<<std::endl;
fs.close();
}
}
void mzw_output_Err_Performance_file(int id, int runtime_counter, int p1, int p2, int p3, float time, float avg_err, float max_err, char * path)
{
std::fstream fs(path,std::ios::app);
if(!fs)
{
std::cout<<"Cant open the Err_Performance file"<<std::endl;
exit(1);
}
else
{
fs<<id<<" "<<runtime_counter<<" "<<p1<<" "<<p2<<" "<<p3<<" "<<time<<" "<<avg_err<<" "<<max_err<<std::endl;
fs.close();
}
}
const char * mzw_check_hip_error(hipError_t x)
{
switch(x)
{
case hipErrorInvalidContext:
return "hipErrorInvalidContext";
case hipErrorInvalidKernelFile:
return "hipErrorInvalidKernelFile";
case hipErrorMemoryAllocation:
return "hipErrorMemoryAllocation";
case hipErrorInitializationError:
return "hipErrorInitializationError";
case hipErrorLaunchFailure:
return "hipErrorLaunchFailure";
case hipErrorLaunchOutOfResources:
return "hipErrorLaunchOutOfResources";
case hipErrorInvalidDevice:
return "hipErrorInvalidDevice";
case hipErrorInvalidValue:
return "hipErrorInvalidValue";
case hipErrorInvalidDevicePointer:
return "hipErrorInvalidDevicePointer";
case hipErrorInvalidMemcpyDirection:
return "hipErrorInvalidMemcpyDirection";
case hipErrorUnknown:
return "hipErrorUnknown";
case hipErrorInvalidResourceHandle:
return "hipErrorInvalidResourceHandle";
case hipErrorNotReady:
return "hipErrorNotReady";
case hipErrorNoDevice:
return "hipErrorNoDevice";
case hipErrorPeerAccessAlreadyEnabled:
return "hipErrorPeerAccessAlreadyEnabled";
case hipErrorPeerAccessNotEnabled:
return "hipErrorPeerAccessNotEnabled";
case hipErrorRuntimeMemory:
return "hipErrorRuntimeMemory";
case hipErrorRuntimeOther:
return "hipErrorRuntimeOther";
case hipErrorHostMemoryAlreadyRegistered:
return "hipErrorHostMemoryAlreadyRegistered";
case hipErrorHostMemoryNotRegistered:
return "hipErrorHostMemoryNotRegistered";
case hipErrorMapBufferObjectFailed:
return "hipErrorMapBufferObjectFailed";
case hipErrorTbd:
return "hipErrorTbd";
default:
return "unknown error";
}
}
const char * mzw_check_rocblas_error(rocblas_status error)
{
switch (error)
{
case rocblas_status_success:
return "rocblas_status_success";
case rocblas_status_invalid_handle:
return "rocblas_status_invalid_handle";
case rocblas_status_not_implemented:
return "rocblas_status_not_implemented";
case rocblas_status_invalid_pointer:
return "rocblas_status_invalid_pointer";
case rocblas_status_invalid_size:
return "rocblas_status_invalid_size";
case rocblas_status_memory_error:
return "rocblas_status_memory_error";
case rocblas_status_internal_error:
return "rocblas_status_internal_error";
case rocblas_status_perf_degraded:
return "rocblas_status_perf_degraded";
case rocblas_status_size_query_mismatch:
return "rocblas_status_size_query_mismatch";
case rocblas_status_size_increased:
return "rocblas_status_size_increased";
case rocblas_status_size_unchanged:
return "rocblas_status_size_unchanged";
case rocblas_status_invalid_value:
return "rocblas_status_invalid_value";
case rocblas_status_continue:
return "rocblas_status_continue";
default:
return "rocblas_status_check_numerics_fail";
}
return "<unknown>";
}
//to replace FP32 GemmEx in pass 1
//TO.DO.: Output the memory address of three matrix
rocblas_status mzw_wrapper_GemmEx(rocblas_handle handle, rocblas_operation TA, rocblas_operation TB, int m, int n, int k, void * alpha_addr,
void * MatrixA, rocblas_datatype Atype, int ldA, void * MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * MatrixC, rocblas_datatype Ctype, int ldC, void * MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags, int Gemm_ID, int runtime_counter,
char * dimension_file_path, char * funcID_file_path, char * Matrix_file_name) //QUES.: If I want to use a handle reference, what should I do?
{
mzw_output_dimension_file(m,n,k,dimension_file_path);
mzw_output_FuncID_file(Gemm_ID,funcID_file_path);
rocblas_status s = rocblas_gemm_ex(handle,TA,TB,m,n,k,alpha_addr,MatrixA,Atype,ldA,MatrixB,Btype,ldB,beta_addr,MatrixC,Ctype,ldC,MatrixC,Ctype,ldC,computeType,algo,solution_index,flags);
hipDeviceSynchronize();
size_t MatrixC_size = sizeof(float)*m*n;
void * host_MatrixC = (void*)malloc(MatrixC_size);
HIP_CHECK(hipMemcpy(host_MatrixC,MatrixC,MatrixC_size,hipMemcpyDeviceToHost));
std::string Matrix_file_path = {Matrix_file_name};
Matrix_file_path += "_"+std::to_string(runtime_counter)+".bin";
//std::cout<<Matrix_file_path<<std::endl;
mzw_WriteFile(Matrix_file_path,host_MatrixC,MatrixC_size);
free(host_MatrixC);
return s;
}
//to replace FP32 GemmEx in pass 2
rocblas_status mzw_checker_GemmEx(rocblas_handle handle, rocblas_operation TA, rocblas_operation TB, int m, int n, int k, void * alpha_addr,
void * MatrixA, rocblas_datatype Atype, int ldA, void * MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * MatrixC, rocblas_datatype Ctype, int ldC, void * MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags, int Gemm_ID, int runtime_counter,
int p1, int p2, int p3, char * Matrix_file_name, char * single_pass_error_file_path) //The single pass error file should be read before we run the pass, and delete all its data after reading
{
float * fp32_result_matrix = (float*)malloc(sizeof(float)*m*n);
//run the faster_mul
hipEvent_t start,end;
hipEventCreate(&start);
hipEventCreate(&end);
float time;
hipEventRecord(start);
rocblas_status s = rocblas_gemm_ex(handle, TA, TB, m, n, k, alpha_addr,
MatrixA, Atype, ldA, MatrixB, Btype, ldB, beta_addr,
MatrixC, Ctype, ldC, MatrixD, Dtype, ldD,
computeType, algo, solution_index, flags);
size_t size;
hipEventRecord(end);
hipEventSynchronize(end);
hipEventElapsedTime(&time, start, end);
//check the result and output it
std::string Matrix_file_path = {Matrix_file_name};
Matrix_file_path += "_"+std::to_string(runtime_counter)+".bin";
mzw_ReadFile(Matrix_file_path,size,fp32_result_matrix,sizeof(float)*m*n);
mzw_Result_Check_Record_Performance((void*)MatrixC,(void*)fp32_result_matrix,m,n,p1,p2,p3,Gemm_ID,runtime_counter,time,single_pass_error_file_path,0);
free(fp32_result_matrix);
return s;
}
//for those optimized faster_mul with result checker, used in pass 2
rocblas_status mzw_checker_faster_mul(rocblas_handle handle, rocblas_operation TA, rocblas_operation TB, int m, int n, int k, void * alpha_addr,
void * MatrixA, rocblas_datatype Atype, int ldA, void * MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * MatrixC, rocblas_datatype Ctype, int ldC, void * MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags, void * memory_pool, int Gemm_ID, int runtime_counter,
int p1, int p2, int p3, char * Matrix_file_name, char * single_pass_error_file_path) //The single pass error file should be read before we run the pass, and delete all its data after reading
{
float * fp32_result_matrix = (float*)malloc(sizeof(float)*m*n);
//run the faster_mul
hipEvent_t start,end;
hipEventCreate(&start);
hipEventCreate(&end);
float time;
hipEventRecord(start);
rocblas_status s = mzw_faster_mul(handle, TA, TB, m, n, k, alpha_addr,
MatrixA, Atype, ldA, MatrixB, Btype, ldB, beta_addr,
MatrixC, Ctype, ldC, MatrixD, Dtype, ldD, computeType, algo, solution_index, flags,
memory_pool, p1, p2, p3);
hipEventRecord(end);
hipEventSynchronize(end);
hipEventElapsedTime(&time, start, end);
//check the result and output it
size_t size;
std::string Matrix_file_path = {Matrix_file_name};
Matrix_file_path += "_"+std::to_string(runtime_counter)+".bin";
mzw_ReadFile(Matrix_file_path,size,fp32_result_matrix,sizeof(float)*m*n);
mzw_Result_Check_Record_Performance((void*)MatrixC,(void*)fp32_result_matrix,m,n,p1,p2,p3,Gemm_ID,runtime_counter,time,single_pass_error_file_path,0);
free(fp32_result_matrix);
return s;
}
//to try optimizing parameters of faster_mul in pass 2
rocblas_status mzw_tuning_GemmEx(rocblas_handle handle, rocblas_operation TA, rocblas_operation TB, int m, int n, int k, void * alpha_addr,
void * MatrixA, rocblas_datatype Atype, int ldA, void * MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * MatrixC, rocblas_datatype Ctype, int ldC, void * MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags, int Gemm_ID, int runtime_counter,
char * optimized_path, char * Matrix_file_name, void * memory_pool) //file_path was handled by opt pass
{
void * original_MatrixC = nullptr;
void * result_Matrix = nullptr;
/*
//For m=n=k=16394, pool is 9GB
size_t pool_size = sizeof(float)*(
2*m*k + //for hp_matrix A / RA
2*k*n + //for hp_matrix B / RB
m*n*2) + //for hp_matrix C / TMP
sizeof(unsigned short)*(
m*k + m*k + //for lp_matrix A / RA
k*n + k*n + //for lp_matrix B / RB
m*n*2); //for lp_matrix C / TMP
HIP_CHECK(hipMalloc((void**)&memory_pool,pool_size));
*/
size_t st_m = m;
size_t st_n = n;
void * original_matrixC = (void*)malloc(sizeof(float)*st_m*st_n);
void * result_matrix = (void*)malloc(sizeof(float)*st_m*st_n);
HIP_CHECK(hipMemcpy(original_matrixC,MatrixC,sizeof(float)*m*n,hipMemcpyDeviceToHost));
void * fp32_result_matrix = (void*)malloc(sizeof(float)*m*n);
float alpha = (float)*(float*)alpha_addr;
float beta = (float)*(float*)beta_addr;
hipEvent_t start,end;
hipEventCreate(&start);
hipEventCreate(&end);
float time;
hipEventRecord(start);
rocblas_status original_status = rocblas_gemm_ex(handle,TA,TB,m,n,k,alpha_addr,MatrixA,Atype,ldA,MatrixB,Btype,ldB,
beta_addr,MatrixC,Ctype,ldC,MatrixD,Dtype,ldD,computeType,algo,solution_index,flags);
hipEventRecord(end);
hipEventSynchronize(end);
hipEventElapsedTime(&time, start, end);
size_t size;
HIP_CHECK(hipMemcpy(result_matrix,MatrixC,sizeof(float)*st_m*st_n,hipMemcpyDeviceToHost));
std::string Matrix_file_path = {Matrix_file_name};
Matrix_file_path += "_"+std::to_string(runtime_counter)+".bin";
mzw_ReadFile(Matrix_file_path,size,fp32_result_matrix,sizeof(float)*st_m*st_n);
mzw_Result_Check_Record_Performance((void*)MatrixC,(void*)fp32_result_matrix,m,n,-1,-1,-1,Gemm_ID,runtime_counter,time,optimized_path,0);
//NOTE: Dont mess around the variable k presenting the dimention of Matrix
for(int x = 0 ; x <= 1; x++)
{
for(int y = 0; y <= 1; y++)
{
for(int z = 0; z <= 1; z++)
{
//std::cout<<"x: "<<x<<" y: "<<y<<" z: "<<z<<std::endl;
hipMemcpy(MatrixC,original_matrixC,sizeof(float)*st_m*st_n,hipMemcpyHostToDevice);
hipDeviceSynchronize();
hipEventRecord(start);
mzw_faster_mul(handle,TA,TB,m,n,k,alpha_addr,MatrixA,Atype,ldA,
MatrixB,Btype,ldB,beta_addr,MatrixC,Ctype,ldC,MatrixC,Ctype,ldC,
computeType,algo,solution_index,flags,memory_pool,x,y,z);
hipEventRecord(end);
hipEventSynchronize(end);
hipEventElapsedTime(&time, start, end);
mzw_Result_Check_Record_Performance((void*)MatrixC,(void*)fp32_result_matrix,m,n,x,y,z,Gemm_ID,runtime_counter,time,optimized_path,0);
}
}
}
HIP_CHECK(hipMemcpy(MatrixC,result_matrix,sizeof(float)*st_m*st_n,hipMemcpyHostToDevice));
//hipFree(original_MatrixC);
//hipFree(result_Matrix);
hipEventDestroy(start);
hipEventDestroy(end);
free(original_matrixC);
free(result_matrix);
free(fp32_result_matrix);
return original_status;
}
//function to check ERROR between low precision GEMM and fp32 GEMM
void mzw_Result_Check_Record_Performance(void * A, void * B, int m, int n, int p1, int p2, int p3, int GEMM_ID, int runtime_counter,
float running_time, char * file_path, int flag) //avg_err = (A-B)/B
{
if(flag == 1)
{
//both A and B are on device
float * host_m1 = (float*)malloc(sizeof(float)*m*n);
float * host_m2 = (float*)malloc(sizeof(float)*m*n);
hipMemcpy(host_m1,(float*)A,sizeof(float)*m*n,hipMemcpyDeviceToHost);
hipMemcpy(host_m2,(float*)B,sizeof(float)*m*n,hipMemcpyDeviceToHost);
float err = 0;
float max_err = 0;
for(int i = 0; i < m*n; i ++)
{
float cur_err = host_m1[i] - host_m2[i];
if(cur_err > max_err || max_err < 0-cur_err)
{
max_err = cur_err > 0 ? cur_err : 0-cur_err;
}
cur_err /= host_m2[i];
if(cur_err <0) err -= cur_err;
else err += cur_err;
}
err /= (float)(m*n);
free(host_m1);
free(host_m2);
//write back to file
mzw_output_Err_Performance_file(GEMM_ID,runtime_counter,p1,p2,p3,running_time,err,max_err,file_path);
}
else if(flag == 0)
{
//B is on host, A is on device
float * host_m1 = (float*)malloc(sizeof(float)*m*n);
float * host_m2 = (float*)B;
hipMemcpy(host_m1,(float*)A,sizeof(float)*m*n,hipMemcpyDeviceToHost);
float err = 0;
float fenmu = 0;
float max_err = 0;
for(int i = 0; i < m*n; i ++)
{
if(!(host_m1[i] == host_m1[i]))
{
std::cout<<"NAN in matrix A"<<std::endl;
exit(1);
}
if(!(host_m2[i] == host_m2[i]))
{
std::cout<<"NAN in matrix B"<<std::endl;
exit(1);
}
float cur_err = host_m1[i] - host_m2[i];
if(cur_err > max_err || max_err < 0-cur_err)
{
max_err = cur_err > 0 ? cur_err : 0-cur_err;
}
fenmu += host_m2[i] * host_m2[i];
err += cur_err * cur_err;
}
err = sqrt(err)/sqrt(fenmu);
free(host_m1);
//write back to file
mzw_output_Err_Performance_file(GEMM_ID,runtime_counter,p1,p2,p3,running_time,err,max_err,file_path);
}
}
//read matrix data
char *mzw_ReadFile(const std::string &filePath, size_t &fileSize, void *buffer, size_t bufferSize)
{
//std::cout<<"Begin to read file"<<std::endl;
struct stat sBuf;
int fileStatus = stat(filePath.data(), &sBuf);
if (fileStatus == -1) {
std::cout<<"failed to get file"<<std::endl;
return nullptr;
}
if (S_ISREG(sBuf.st_mode) == 0) {
std::cout<<filePath.c_str()<<" is not a file, please enter a file"<<std::endl;
return nullptr;
}
std::ifstream file;
file.open(filePath, std::ios::binary);
if (!file.is_open()) {
std::cout<<"Open file failed. path "<<filePath.c_str()<<std::endl;
return nullptr;
}
std::filebuf *buf = file.rdbuf();
size_t size = buf->pubseekoff(0, std::ios::end, std::ios::in);
if (size == 0) {
std::cout<<"file size is 0"<<std::endl;
file.close();
return nullptr;
}
if (size > bufferSize) {
std::cout<<"file size = "<<size<<" is larger than buffer size = "<<bufferSize<<std::endl;
file.close();
return nullptr;
}
buf->pubseekpos(0, std::ios::in);
buf->sgetn(static_cast<char *>(buffer), size);
fileSize = size;
file.close();
//std::cout<<"Finish read file"<<std::endl;
return static_cast<char *>(buffer);
}
bool mzw_WriteFile(const std::string &filePath, const void *buffer, size_t size)
{
if (buffer == nullptr) {
//ERROR_LOG("Write file failed. buffer is nullptr");
return false;
}
FILE *outputFile = fopen(filePath.c_str(), "wb");
if (outputFile == nullptr) {
//ERROR_LOG("Open file failed. path = %s", filePath.c_str());
return false;
}
fwrite(buffer, size, sizeof(char), outputFile);
fclose(outputFile);
return true;
}
__global__ void mzw_fp32_cast_fp16(float * __restrict__ src_ptr, __half * __restrict__ dst_ptr,int m, int n)
{
/*
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int start = (row * n + col)*1024;
for(int i = 0; i < 1024; i++)
{
dst_ptr[start + i] = __float2half_rn(src_ptr[start + i]);
}
*/
size_t i = (blockIdx.x * blockDim.x) + threadIdx.x;
for(; i < m*n; i += gridDim.x * blockDim.x)
{
dst_ptr[i] = __float2half_rn(src_ptr[i]);
}
}
__global__ void mzw_fp16_cast_fp32(__half * __restrict__ src_ptr, float * __restrict__ dst_ptr,int m, int n)
{
/*
int col = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int start = (row*n+col)*1024;
for(int i = 0; i < 1024; i++)
{
dst_ptr[start + i] = __half2float(src_ptr[start + i]);
}
*/
size_t i = (blockIdx.x * blockDim.x) + threadIdx.x;
for(; i < m*n; i += gridDim.x * blockDim.x)
{
dst_ptr[i] = __half2float(src_ptr[i]);
}
}
void mzw_quan(void * src_ptr, void * dst_ptr, int m, int n, float * scaling_factor, rocblas_datatype lowp, bool flag)
{
//Now we assume that lowp passed can be rocblas_datatype_f16_r or HIPBLAS_R_8I
if(lowp == rocblas_datatype_f16_r)
{
//typecast
//TO.DO.: Optimize it.
//dim3 ThreadPerBlock(32,32);
//dim3 NumBlock((m/ThreadPerBlock.x)/32,(n/ThreadPerBlock.y)/32);
dim3 ThreadPerBlock(256);
dim3 NumBlock(256);
mzw_fp32_cast_fp16<<<NumBlock, ThreadPerBlock>>>((float*)src_ptr,(__half*)dst_ptr,m,n);
//printf( "Typecast fp16 Time= %.3f msec\n",msecTotal);
}
else
{
//find the max abs value of src_matrix
//compute the scalar factor
//scalar multiply matrix
//scalar addition
//typecast
//If flag = true, it means that we handling the mzw_quan of original Matrix A and B, so we need to compute and rewrite s.f.
//If flag = false, it means that we handling the mzw_quan of matrix RA and RB, so we just use s.f.
}
}
void mzw_dequan(void * src_ptr, void * dst_ptr, int m, int n, float * scaling_factor, rocblas_datatype lowp)
{
if(lowp == rocblas_datatype_f16_r)
{
//typecast
//TO.DO.: Optimize it
//dim3 ThreadPerBlock(32,32);
//dim3 NumBlock((m/ThreadPerBlock.x)/32,(n/ThreadPerBlock.y)/32);
dim3 ThreadPerBlock(256);
dim3 NumBlock(256);
mzw_fp16_cast_fp32<<<NumBlock, ThreadPerBlock>>>((__half*)src_ptr,(float*)dst_ptr,m,n);
//printf( "Typecast fp32 Time= %.3f msec\n",msecTotal);
}
//We dont need flag to indicate whether we need to rewrite the s.f. or not
}
rocblas_status mzw_faster_mul(rocblas_handle blas_handle, rocblas_operation Trans_A, rocblas_operation Trans_B, int m, int n, int k, void * alpha_addr,
void * device_fp32MatrixA, rocblas_datatype Atype, int ldA, void * device_fp32MatrixB, rocblas_datatype Btype, int ldB, void * beta_addr,
void * device_fp32MatrixC, rocblas_datatype Ctype, int ldC, void * device_fp32MatrixD, rocblas_datatype Dtype, int ldD,
rocblas_datatype computeType, rocblas_gemm_algo algo, int32_t solution_index, uint32_t flags, void * memory_pool, int p1, int p2, int p3)
//TO.DO.: Exchange the order of arguments to keep the same as original GemmEx //DONE
{
//QUES.: How to make the Trans_A and Trans_B right?
//ANS.: To be clear, if Trans_A/Trans_B == T, then make the corresponding one to become col-major
/*如果前边的参数是't',那么leading dimesion 就是矩阵的列数,因为此时的矩阵是按照C语言以行优先的方式来存储的;
反之如果前边的参数是'n',那么leading dimesion 就是矩阵的行数,此时的矩阵保持CUBLAS的列优先存储方式*/
//因为fp16下的gemmex在NN的情况下跑得最快,所以我们第一步:假定我们只需要面对NN输入 第二步:将所有情况强行转为NN
rocblas_operation New_Trans_A = rocblas_operation_none;
rocblas_operation New_Trans_B = rocblas_operation_none;
rocblas_datatype lowp = rocblas_datatype_f16_r;
int new_ldA = ldA;
int new_ldB = ldB;
if(Trans_A == rocblas_operation_transpose)
{
New_Trans_A = rocblas_operation_none;
new_ldA = m;
}
if(Trans_B == rocblas_operation_transpose)
{
New_Trans_B = rocblas_operation_none;
new_ldA = k;
}
if(1) //no need to judge type of lowp
{
/*
sizeof(float)*(
max(max_p2,max_p3)*2*m*k + //for hp_matrix A / RA
max(max_p1,max_p3)*2*k*n + //for hp_matrix B / RB
m*n*2) + //for hp_matrix C / TMP
sizeof(unsigned short)*(
m*k + max(max_p2,max_p3)*m*k + //for lp_matrix A / RA
k*n + max(max_p1,max_p3)*k*n + //for lp_matrix B / RB
m*n*2); //for lp_matrix C / TMP
*/
//get each ptr
//Ptr for HP Matrix
int A_related_iter = max(p2,p3);
char * device_fp32_MatrixA_RA [2*A_related_iter]; //start addr of each hp_matrix related to A
//For each iteration, its layout is like: HP~A_(i-1),HPRA_(i)
char * HP_A_RA_start_addr = (char*)memory_pool;
for(int i = 0; i < 2*A_related_iter; i++)
{
device_fp32_MatrixA_RA[i] = HP_A_RA_start_addr+i*m*k*sizeof(float);
}
int B_related_iter = max(p1,p3);
char * HP_B_RB_start_addr = HP_A_RA_start_addr+2*A_related_iter*m*k*sizeof(float);
//For each iteration, its layout is like: HP~B_(i-1),HPRB_(i)
char * device_fp32_MatrixB_RB [2*B_related_iter]; //start addr of each hp_matrix related to B
for(int i = 0; i < 2*B_related_iter; i++)
{
device_fp32_MatrixB_RB[i] = HP_B_RB_start_addr+i*n*k*sizeof(float);
}
char * HP_appro_MatrixC_start_addr = HP_B_RB_start_addr + 2*B_related_iter*n*k*sizeof(float);
char * HP_TMP_start_addr = HP_appro_MatrixC_start_addr + m * n * sizeof(float);
//Ptr for LP Matrix
char * LP_A_RA_start_addr = HP_TMP_start_addr+ m * n * sizeof(float);
char * device_lp_MatrixA_RA [1+A_related_iter];
for(int i = 0; i < 1+A_related_iter; i++)
{
device_lp_MatrixA_RA[i] = LP_A_RA_start_addr + i * m * k * sizeof(unsigned short);
}
char * LP_B_RB_start_addr = LP_A_RA_start_addr + (1+A_related_iter)*m*k*sizeof(unsigned short);
char * device_lp_MatrixB_RB [1 + B_related_iter];
for(int i = 0; i < 1+B_related_iter; i++)
{
device_lp_MatrixB_RB[i] = LP_B_RB_start_addr + i * n * k * sizeof(unsigned short);
}
//QUES.: Can we just calculate the FP32 Matrix C using FP16 Matrix A and B without quantization on FP16 Matrix C?
char * LP_MatrixC_start_addr = LP_B_RB_start_addr + (1+B_related_iter)*n*k*sizeof(unsigned short);
char * LP_TMP_start_addr = LP_MatrixC_start_addr + m * n * sizeof(unsigned short);
//typecast hp_matrixA/B into lp_matrixA/B
float scale_factor = 0;
//std::cout<<"Begin quantization"<<std::endl;
mzw_quan((void*)device_fp32MatrixA,(void*)device_lp_MatrixA_RA[0],m,k,&scale_factor,lowp,false);
mzw_quan((void*)device_fp32MatrixB,(void*)device_lp_MatrixB_RB[0],k,n,&scale_factor,lowp,false);
//std::cout<<"Finish quantization for A and B"<<std::endl;
//run the lp_gemm
//QUES:How to covert float to short int? ANS.: Use __half in the future
float lp_alpha = static_cast<float>(1);
float lp_beta = static_cast<float>(0);
ROC_BLAS_CHECK(rocblas_gemm_ex(blas_handle, Trans_A, Trans_B,
m, n, k, &lp_alpha,
(__half*)device_lp_MatrixA_RA[0], rocblas_datatype_f16_r, ldA,
(__half*)device_lp_MatrixB_RB[0], rocblas_datatype_f16_r, ldB,
&lp_beta, (float*)HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
(float*)HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
rocblas_datatype_f32_r, rocblas_gemm_algo_standard, solution_index, flags));
//hipDeviceSynchronize();
//std::cout<<"Finish lp GEMM"<<std::endl;
//dequan((void*)LP_MatrixC_start_addr,(void*)HP_appro_MatrixC_start_addr,m,n,lowp);
float add_alpha = 1.0;
float add_beta = -1.0;
//FOR RB-related Calculation
char * lasttime_HP_RB = static_cast<char *>(device_fp32MatrixB);
char * lasttime_LP_RB = device_lp_MatrixB_RB[0];
for(int i = 0; i < B_related_iter; i++)
{
mzw_dequan((void*)lasttime_LP_RB,(void*)device_fp32_MatrixB_RB[2*i],k,n,&scale_factor,lowp);
//TO.DO.: Use GEAM() to do the sub //DONE
if(!i)
{
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, Trans_B, Trans_B,
k,n, &add_alpha, (float*)lasttime_HP_RB, ldB,
&add_beta, (float*)device_fp32_MatrixB_RB[2*i], ldB,
(float*)device_fp32_MatrixB_RB[2*i+1], new_ldB));
}
else
{
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, New_Trans_B, New_Trans_B,
k,n, &add_alpha, (float*)lasttime_HP_RB, new_ldB,
&add_beta, (float*)device_fp32_MatrixB_RB[2*i], new_ldB,
(float*)device_fp32_MatrixB_RB[2*i+1], new_ldB));
}
//hipDeviceSynchronize();
//sub(lasttime_HP_RB,device_fp32_MatrixB_RB[2*i],device_fp32_MatrixB_RB[2*i+1]);
mzw_quan((void*)device_fp32_MatrixB_RB[2*i+1],(void*)device_lp_MatrixB_RB[1+i],k,n,&scale_factor,lowp,false);
lasttime_HP_RB = device_fp32_MatrixB_RB[2*i+1];
lasttime_LP_RB = device_lp_MatrixB_RB[1+i];
}
//std::cout<<"Finish RB-related Calculation"<<std::endl;
//FOR RA-related Calculation
char * lasttime_HP_RA = static_cast<char*>(device_fp32MatrixA);
char * lasttime_LP_RA = device_lp_MatrixA_RA[0];
for(int i = 0; i < A_related_iter; i++)
{
mzw_dequan((void*)lasttime_LP_RA,(void*)device_fp32_MatrixA_RA[2*i],m,k,&scale_factor,lowp);
//sub(op1,op2,res): res = op1 - op2
if(!i)
{
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, Trans_A, Trans_A,
m,k, &add_alpha, (float*)lasttime_HP_RA, ldA,
&add_beta, (float*)device_fp32_MatrixA_RA[2*i], ldA,
(float*)device_fp32_MatrixA_RA[2*i+1], new_ldA));
}
else
{
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, New_Trans_A, New_Trans_A,
m,k, &add_alpha, (float*)lasttime_HP_RA, new_ldA,
&add_beta, (float*)device_fp32_MatrixA_RA[2*i], new_ldA,
(float*)device_fp32_MatrixA_RA[2*i+1], new_ldA));
}
//hipDeviceSynchronize();
//sub(lasttime_HP_RA,device_fp32_MatrixA_RA[2*i],device_fp32_MatrixA_RA[2*i+1]);
mzw_quan((void*)device_fp32_MatrixA_RA[2*i+1],(void*)device_lp_MatrixA_RA[1+i],m,k,&scale_factor,lowp,false);
lasttime_HP_RA = device_fp32_MatrixA_RA[2*i+1];
lasttime_LP_RA = device_lp_MatrixA_RA[1+i];
}
//std::cout<<"Finish RA-related Calculation"<<std::endl;
//QUES.: How to deal with the transpose in refinement?
add_beta = 1.0;
//Refine with RB
//unsigned short * LP_TMP = LP_MatrixC_start_addr;
for(int i = 0; i < p1; i++)
{
ROC_BLAS_CHECK(rocblas_gemm_ex(blas_handle, Trans_A, New_Trans_B,
m, n, k, &add_alpha,
device_lp_MatrixA_RA[0], rocblas_datatype_f16_r, ldA,
device_lp_MatrixB_RB[1+i], rocblas_datatype_f16_r, new_ldB,
&add_beta, HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
rocblas_datatype_f32_r, rocblas_gemm_algo_standard, solution_index, flags));
/*
ROC_BLAS_CHECK(rocblas_hgemm(blas_handle, Trans_A, Trans_B,
m, n, k, &lp_alpha,
device_lp_MatrixA_RA[0], ldA,
device_lp_MatrixB_RB[1+i], ldB,
&lp_beta, LP_TMP, ldC));
dequan(LP_TMP,HP_TMP_start_addr,lowp);
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, Trans_A, Trans_B,
m,n, &add_alpha, HP_appro_MatrixC_start_addr, m,
&add_beta, HP_TMP_start_addr, m,
HP_appro_MatrixC_start_addr, m));
*/
}
//hipDeviceSynchronize();
//std::cout<<"Finish RB-related refinement"<<std::endl;
//Refine with RA
for(int i = 0; i < p2; i++)
{
ROC_BLAS_CHECK(rocblas_gemm_ex(blas_handle, New_Trans_A, Trans_B,
m, n, k, &add_alpha,
device_lp_MatrixA_RA[1+i], rocblas_datatype_f16_r, new_ldA,
device_lp_MatrixB_RB[0], rocblas_datatype_f16_r, ldB,
&add_beta, HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
rocblas_datatype_f32_r, rocblas_gemm_algo_standard, solution_index, flags));
/*
ROC_BLAS_CHECK(rocblas_hgemm(blas_handle, Trans_A, Trans_B,
m, n, k, &lp_alpha,
device_lp_MatrixA_RA[1+i], ldA,
device_lp_MatrixB_RB[0], ldB,
&lp_beta, LP_TMP, ldC));
dequan(LP_TMP,HP_TMP_start_addr,lowp);
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, Trans_A, Trans_B,
m,n, &add_alpha, HP_appro_MatrixC_start_addr, m,
&add_beta, HP_TMP_start_addr, m,
HP_appro_MatrixC_start_addr, m));
*/
}
//hipDeviceSynchronize();
//std::cout<<"Finish RA-related refinement"<<std::endl;
//Refine with RB and RA
for(int i = 0; i < p3; i++)
{
ROC_BLAS_CHECK(rocblas_gemm_ex(blas_handle, New_Trans_A, New_Trans_B,
m, n, k, &add_alpha,
device_lp_MatrixA_RA[1+i], rocblas_datatype_f16_r, new_ldA,
device_lp_MatrixB_RB[1+i], rocblas_datatype_f16_r, new_ldB,
&add_beta, HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
HP_appro_MatrixC_start_addr, rocblas_datatype_f32_r, ldC,
rocblas_datatype_f32_r, rocblas_gemm_algo_standard, solution_index, flags));
/*
ROC_BLAS_CHECK(rocblas_hgemm(blas_handle, Trans_A, Trans_B,
m, n, k, &lp_alpha,
device_lp_MatrixA_RA[1+i], ldA,
device_lp_MatrixB_RB[1+i], ldB,
&lp_beta, LP_TMP, ldC));
dequan(LP_TMP,HP_TMP_start_addr,lowp);
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, Trans_A, Trans_B,
m,n, &add_alpha, HP_appro_MatrixC_start_addr, m,
&add_beta, HP_TMP_start_addr, m,
HP_appro_MatrixC_start_addr, m));
*/
}
//hipDeviceSynchronize();
//std::cout<<"Finish RB,RA-related refinement"<<std::endl;
//Get the final result into the original output(device_fp32MatrixC)
ROC_BLAS_CHECK(rocblas_sgeam(blas_handle, rocblas_operation_none, Trans_B,
m,n, (float*)alpha_addr, (float*)HP_appro_MatrixC_start_addr, ldC,
(float*)beta_addr, (float*)device_fp32MatrixC, ldC,
(float*)device_fp32MatrixC, ldC));
hipDeviceSynchronize();
//std::cout<<"Finish whole faster_mul"<<std::endl;
return rocblas_status_success;
}
}