-
Notifications
You must be signed in to change notification settings - Fork 0
/
pure_pursuit.py
176 lines (134 loc) · 4.62 KB
/
pure_pursuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# PURE PURSUIT
# (Can be considered a version of proportional guidance)
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.animation import FuncAnimation
import math
import numpy as np
from vector3 import *
class Missile:
def __init__(self, pos, vel):
self.pos = pos
self.vel = vel
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def main():
t_pos0 = vec3(1000, 0, -3000)
t_vel0 = vec3(-300, 0, 0)
t = Missile(t_pos0, t_vel0)
m_pos0 = vec3(0, 0, 0)
m_vel0 = vec3(0, 0, -450)
m = Missile(m_pos0, m_vel0)
m_poses_x = []
m_poses_y = []
m_poses_z = []
t_poses_x = []
t_poses_y = []
t_poses_z = []
times = []
cycle = 0
time = 0
dt = 0.02
terminate = False
status = "None"
print("== RUN SIM ==")
while not terminate:
# GUIDANCE
aimpoint_dir = t.pos - m.pos
aimpoint_dir /= aimpoint_dir.mag()
m.vel = aimpoint_dir * m.vel.mag()
# TARGET MANEUVER
t.vel = vec3(t.vel.mag() * math.sin(time * 0.25), t.vel.mag() * math.cos(time * 0.25), 0)
# EULER INTEGRATION
t.pos = t.pos + t.vel * dt
m.pos = m.pos + m.vel * dt
m.vel.z += 9.81 * dt
# SIM DATA RECORD
m_poses_x.append(m.pos.x)
m_poses_y.append(m.pos.y)
m_poses_z.append(-m.pos.z)
t_poses_x.append(t.pos.x)
t_poses_y.append(t.pos.y)
t_poses_z.append(-t.pos.z)
time = cycle * dt
times.append(time)
cycle += 1
# SIM TERMINATION
if (m.pos - t.pos).mag() < 10:
terminate = True
status = "Hit Target"
if cycle > 1e5:
terminate = True
status = "Timeout"
print("== END SIM ==")
print("Status:", status)
print("Intercept time:", time)
return times, m_poses_x, m_poses_y, m_poses_z,\
t_poses_x, t_poses_y, t_poses_z
def plot_traj(ts, mx, my, mz, tx, ty, tz):
fig = plt.figure()
ax = plt.figure().add_subplot(projection='3d')
traj_m, = ax.plot(mx, my, mz)
traj_t, = ax.plot(tx, ty, tz)
def update(frame):
traj_m.set_data(mx[:frame], my[:frame])
traj_m.set_3d_properties(mz[:frame])
traj_t.set_data(tx[:frame], ty[:frame])
traj_t.set_3d_properties(tz[:frame])
num_frames = len(ts)
animation = FuncAnimation(fig, update, frames=num_frames, interval=3, repeat=False)
set_axes_equal(ax)
plt.show()
def plot_traj(mx, my, mz, tx, ty, tz):
x1 = mx
y1 = my
z1 = mz
x2 = tx
y2 = ty
z2 = tz
limit_px = max(max(mx), max(tx)) + 1000
limit_mx = min(min(mx), min(tx)) - 1000
limit_py = max(max(my), max(ty)) + 1000
limit_my = min(min(my), min(ty)) - 1000
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d', computed_zorder=False)
ax.set_xlabel('X (m)')
ax.set_ylabel('Y (m)')
ax.set_zlabel('-Z (m)')
line1, = ax.plot(x1, y1, z1, label='Interceptor')
line2, = ax.plot(x2, y2, z2, label='Target')
mpoint, = ax.plot([], [], [], marker='o', markersize=2, color='blue')
tpoint, = ax.plot([], [], [], marker='o', markersize=2, color='orange')
terrainX = np.arange(limit_mx, limit_px, 500)
terrainY = np.arange(limit_my, limit_py, 500)
terrainX, terrainY = np.meshgrid(terrainX, terrainY)
terrainZ = np.sin(0 * terrainX)
ax.plot_surface(terrainX, terrainY, terrainZ, color="bisque")
def update(frame):
line1.set_data(x1[:frame], y1[:frame])
line1.set_3d_properties(z1[:frame])
line2.set_data(x2[:frame], y2[:frame])
line2.set_3d_properties(z2[:frame])
mpoint.set_data([x1[frame]], [y1[frame]])
mpoint.set_3d_properties([z1[frame]])
tpoint.set_data([x2[frame]], [y2[frame]])
tpoint.set_3d_properties([z2[frame]])
num_frames = len(x1)
animation = FuncAnimation(fig, update, frames=num_frames, interval=0.02, repeat=False)
set_axes_equal(ax)
plt.legend()
plt.show()
ts, mx, my, mz, tx, ty, tz = main()
plot_traj(mx, my, mz, tx, ty, tz)