-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
xnrg_14_bl09xx.ino
500 lines (450 loc) · 21.3 KB
/
xnrg_14_bl09xx.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
xnrg_14_bl09xx.ino - BL09XX energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#if defined(USE_BL0940) || defined(USE_BL09XX)
#ifdef USE_BL0940
#warning **** USE_BL0940 is obsolete. Please replace with USE_BLE09XX ****
#endif
/*********************************************************************************************\
* Support the following Shangai Belling energy sensors:
*
* BL0942 - Energy (as in Shelly Gen3)
* {"NAME":"Shelly 1PM Gen3","GPIO":[0,32,0,4736,224,0,3200,8161,576,1,192,0,0,0,0,0,0,0,0,1,1,1],"FLAG":0,"BASE":1,"CMND":"AdcGpio3 10000,10000,4000"}
* {"NAME":"Shelly Plus1PMMini","GPIO":[576,32,0,4736,0,224,3200,8161,0,0,192,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350}
* {"NAME":"Shelly PlusPMMini","GPIO":[576,32,0,4736,0,0,3200,8161,0,0,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1,"CMND":"AdcParam1 2,5600,4700,3350}
* Based on datasheet from https://datasheet.lcsc.com/lcsc/2110191830_BL-Shanghai-Belling-BL0942_C2909509.pdf
*
* BL0940 - Energy (as in Blitzwolf SHP10)
* {"NAME":"BW-SHP10","GPIO":[0,148,0,207,158,21,0,0,0,17,0,0,0],"FLAG":0,"BASE":18}
* Based on datasheet from http://www.belling.com.cn/media/file_object/bel_product/BL09XX/datasheet/BL09XX_V1.1_en.pdf
*
* BL0939 - Energy (as in Sonoff Dual R3 v2)
* {"NAME":"Sonoff Dual R3 v2","GPIO":[32,0,0,0,0,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,3200,8128,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
* Based on datasheet from https://www.belling.com.cn/product_info.html?id=368
* See https://github.com/arendst/Tasmota/discussions/10793
\*********************************************************************************************/
#define XNRG_14 14
//#define DEBUG_BL09XX
#ifndef BL0939_PREF
#define BL0939_PREF 713 // =(4046*1*0,51*1000)/(1,218*1,218*(390*5+0,51)) = 713,105
#endif
#ifndef BL0939_UREF
#define BL0939_UREF 17159 // =(79931*0,51*1000)/(1,218*(390*5+0,51)) = 17158,92
#endif
#ifndef BL0939_IREF
#define BL0939_IREF 266013 // =(324004*1)/1,218 = 266013,14
#endif
#ifndef BL0940_PREF
#define BL0940_PREF 1430
#endif
#ifndef BL0940_UREF
#define BL0940_UREF 33000
#endif
#ifndef BL0940_IREF
#define BL0940_IREF 275000
#endif
#ifndef BL0942_PREF
#define BL0942_PREF 596
#endif
#ifndef BL0942_UREF
#define BL0942_UREF 15187
#endif
#ifndef BL0942_IREF
#define BL0942_IREF 251213
#endif
#ifndef BL09XX_WRITE_COMMAND
#define BL09XX_WRITE_COMMAND 0xA0 // 0xA8 according to documentation
#endif
#define BL09XX_REG_I_FAST_RMS_CTRL 0x10
#define BL09XX_REG_MODE 0x18
#define BL09XX_REG_SOFT_RESET 0x19
#define BL09XX_REG_USR_WRPROT 0x1A
#define BL09XX_REG_TPS_CTRL 0x1B
#ifndef BL09XX_READ_COMMAND
#define BL09XX_READ_COMMAND 0x50 // 0x58 according to documentation
#endif
#define BL09XX_FULL_PACKET 0xAA
#define BL09XX_PACKET_HEADER 0x55 // 0x58 according to documentation
#include <TasmotaSerial.h>
TasmotaSerial *Bl09XXSerial = nullptr;
enum Bl09xxModel { BL0939_MODEL, BL0940_MODEL, BL0942_MODEL, BL09XX_MODEL }; // Model index number starting from 0
const uint32_t bl09xx_pref[] = { BL0939_PREF, BL0940_PREF, BL0942_PREF }; // Power reference constant
const uint32_t bl09xx_uref[] = { BL0939_UREF, BL0940_UREF, BL0942_UREF }; // Voltage reference constant
const uint32_t bl09xx_iref[] = { BL0939_IREF, BL0940_IREF, BL0942_IREF }; // Current reference constant
const uint8_t bl09xx_type[] = { 39, 40, 42 }; // Device name BL09xx
const uint8_t bl09xx_phase_count[] = { 2, 1, 1 }; // Supported phase/channel count
const uint8_t bl09xx_address[] = { 0x05, 0x00, 0x08 }; // Device address
const uint8_t bl09xx_buffer_size[] = { 35, 35, 23 }; // Serial receive buffer size
const uint8_t bl09xx_init[5][4] = {
{ BL09XX_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A }, // Reset to default
{ BL09XX_REG_USR_WRPROT, 0x55, 0x00, 0x00 }, // Enable User Operation Write
{ BL09XX_REG_MODE, 0x00, 0x10, 0x00 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS
{ BL09XX_REG_TPS_CTRL, 0xFF, 0x47, 0x00 }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS
{ BL09XX_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00 } // 0x181C = Half cycle, Fast RMS threshold 6172
};
struct BL09XX {
uint32_t voltage = 0;
uint32_t frequency = 0;
uint32_t current[2] = { 0, };
int32_t power[2] = { 0, };
float temperature;
uint16_t tps1 = 0;
uint16_t baudrate;
uint8_t *rx_buffer = nullptr;
uint8_t buffer_size = 0;
uint8_t byte_counter = 0;
uint8_t address = 0;
uint8_t model = 0;
uint8_t rx_pin;
bool support_negative = 0;
bool received = false;
} Bl09XX;
bool Bl09XXDecode3940(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Sample from BL0940 (single channel)
// 55 F2 03 00 00 00 00 7E 02 00 D4 B0 72 AC 01 00 00 00 00 02 01 00 00 00 00 00 00 00 BA 01 00 FE 03 00 83
// 55 88 02 00 49 00 00 FE 02 00 AF EF 71 D2 01 00 EB FF FF 49 01 00 00 00 00 02 00 00 CF 01 00 FE 03 00 9F
// 55 B9 33 00 DE 45 00 94 02 00 CF E4 70 63 02 00 6C 4C 00 13 01 00 09 00 00 00 00 00 E4 01 00 FE 03 00 72
// 55 B8 55 00 2F 73 00 D2 02 00 00 C6 74 F9 01 00 97 89 00 37 01 00 AB 00 00 2D 00 00 02 02 00 FE 03 00 6E = U 7652864, I 29487/0, P 35223/0, C 171/0, T 514
// Hd IFRms--- Current- Reserved Voltage- Reserved Power--- Reserved CF------ Reserved TPS1---- TPS2---- Ck
//
// Sample from BL0939 (dual channel)
// 55 82 03 00 00 00 00 1E 15 01 65 80 3E E5 C6 00 00 00 00 50 B1 00 00 00 00 00 00 00 F9 01 00 FE 03 00 D2 = U 4096101, I 0/70942, P 0/45392, C 0/0, T 505
// 55 E6 02 00 00 00 00 37 15 01 0F 83 3E F4 C7 00 00 00 00 69 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 7E = U 4096783, I 0/70967, P 0/45417, C 0/1, T 506
// 55 29 03 00 00 00 00 27 15 01 3A 86 3E AF C8 00 00 00 00 67 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 62 = U 4097594, I 0/70951, P 0/45415, C 0/1, T 506
// 55 04 03 00 00 00 00 D6 14 01 7D 8E 3E 25 C7 00 00 00 00 53 B1 00 00 00 00 01 00 00 F9 01 00 FE 03 00 2E = U 4099709, I 0/70870, P 0/45395, C 0/1, T 505
// Hd IFRms-A- CurrentA CurrentB Voltage- IFRms-B- PowerA-- PowerB-- CF-A---- CF-B---- TPS1---- TPS2---- Ck
uint16_t tps1 = Bl09XX.rx_buffer[29] << 8 | Bl09XX.rx_buffer[28]; // TPS1 unsigned
if ((Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) || // Bad header
(Bl09XX.tps1 && ((tps1 < (Bl09XX.tps1 -10)) || (tps1 > (Bl09XX.tps1 +10)))) // Invalid temperature change
) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X, tps1:%d"), Bl09XX.rx_buffer[0], tps1);
return false;
}
Bl09XX.tps1 = tps1;
float t = ((170.0f/448.0f)*(((float)Bl09XX.tps1/2.0f)-32.0f))-45.0f;
Bl09XX.temperature = ConvertTemp(t);
Bl09XX.voltage = Bl09XX.rx_buffer[12] << 16 | Bl09XX.rx_buffer[11] << 8 | Bl09XX.rx_buffer[10]; // V_RMS unsigned
Bl09XX.current[0] = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // IA_RMS unsigned
Bl09XX.power[0] = Bl09XX.rx_buffer[18] << 16 | Bl09XX.rx_buffer[17] << 8 | Bl09XX.rx_buffer[16]; // WATT_A signed
if (bitRead(Bl09XX.power[0], 23)) { Bl09XX.power[0] |= 0xFF000000; } // Extend sign bit
if (Energy->phase_count > 1) {
Bl09XX.current[1] = Bl09XX.rx_buffer[9] << 16 | Bl09XX.rx_buffer[8] << 8 | Bl09XX.rx_buffer[7]; // IB_RMS unsigned
Bl09XX.power[1] = Bl09XX.rx_buffer[21] << 16 | Bl09XX.rx_buffer[20] << 8 | Bl09XX.rx_buffer[19]; // WATT_B signed
if (bitRead(Bl09XX.power[1], 23)) { Bl09XX.power[1] |= 0xFF000000; } // Extend sign bit
}
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d/%d, P %d/%d, T %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.current[1], Bl09XX.power[0], Bl09XX.power[1], Bl09XX.tps1);
#endif
return true;
}
bool Bl09XXDecode42(void) {
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Hd Current- Voltage- IFRms--- Power--- CF------ Freq- 00 St 00 00 Ck
// 55 A3 B9 00 9E 4C 36 93 43 00 F4 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558558, I 47523, P 26380, C 153
// 55 AC B9 00 79 4D 36 C4 43 00 EF 98 FF 99 00 00 16 4E 00 01 01 00
// U 3558777, I 47532, P 26385, C 153
// 55 40 BA 00 2D 50 36 FE 43 00 96 98 FF 99 00 00 16 4E 00 01 01 00
// U 3559469, I 47680, P 26474, C 153
// 55 91 B9 00 33 4C 36 FB 43 00 FC 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3558451, I 47505, P 26372, C 153
// 55 AF B9 00 05 51 36 D1 43 00 E4 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3559685, I 47535, P 26396, C 153
// 55 21 BA 00 3A 5E 36 10 44 00 8B 98 FF 99 00 00 16 4E 00 01 01 00
// U 3563066, I 47649, P 26485, C 153
// 55 BE B9 00 B2 55 36 9D 42 00 D7 98 FF 99 00 00 1E 4E 00 21 01 00
// U 3560882, I 47550, P 26409, C 153
// All above from a single test with a 40W buld on 230V
// Shelly Plus1PMMini
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Hd Current- Voltage- IFRms--- Power--- CF------ Freq- 00 St 00 00 Ck
// 55 20 16 01 D2 A4 33 9B 63 00 9E 92 00 33 00 00 26 4E 00 20 01 00 7C
// 55 07 15 01 6A A7 33 C0 62 00 0E 92 00 34 00 00 26 4E 00 20 01 00 66
// 55 F0 15 01 E3 9C 33 4B 63 00 6E 92 00 34 00 00 26 4E 00 20 01 00 23
if (Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X"), Bl09XX.rx_buffer[0]);
return false;
}
Bl09XX.frequency = Bl09XX.rx_buffer[17] << 8 | Bl09XX.rx_buffer[16]; // FREQ
Bl09XX.voltage = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // V_RMS unsigned
Bl09XX.current[0] = Bl09XX.rx_buffer[3] << 16 | Bl09XX.rx_buffer[2] << 8 | Bl09XX.rx_buffer[1]; // IA_RMS unsigned
if (Bl09XX.support_negative) {
Bl09XX.power[0] = Bl09XX.rx_buffer[12] << 16 | Bl09XX.rx_buffer[11] << 8 | Bl09XX.rx_buffer[10]; // WATT_A signed
if (bitRead(Bl09XX.power[0], 23)) { Bl09XX.power[0] |= 0xFF000000; } // Extend sign bit
// Above reverted in favour of https://github.com/arendst/Tasmota/issues/15374#issuecomment-1105293179
} else {
int32_t tmp = Bl09XX.rx_buffer[12] << 24 | Bl09XX.rx_buffer[11] << 16 | Bl09XX.rx_buffer[10] << 8; // WATT_A signed
Bl09XX.power[0] = abs(tmp >> 8);
}
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d, P %d"),
Bl09XX.voltage, Bl09XX.current[0], Bl09XX.power[0]);
#endif
return true;
}
void Bl09XXUpdateEnergy() {
if (Energy->power_on) { // Powered on
if (BL0942_MODEL == Bl09XX.model) {
Energy->frequency[0] = (float)1000000.0 / Bl09XX.frequency; // Datasheet page 19 (v1.04)
}
Energy->voltage[0] = (float)Bl09XX.voltage / EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION);
Energy->voltage[1] = Energy->voltage[0];
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %2_f, T %2_f"), &Energy->voltage[0], &Bl09XX.temperature);
#endif
for (uint32_t chan = 0; chan < Energy->phase_count; chan++) {
uint32_t power_calibration = EnergyGetCalibration(ENERGY_POWER_CALIBRATION, chan);
uint32_t current_calibration = EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION, chan);
if (Bl09XX.power[chan] > power_calibration) { // We need at least 1W
Energy->active_power[chan] = (float)Bl09XX.power[chan] / power_calibration;
Energy->current[chan] = (float)Bl09XX.current[chan] / current_calibration;
} else {
Energy->active_power[chan] = 0;
Energy->current[chan] = 0;
}
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I %2_f, P %2_f"), chan, &Energy->current[chan], &Energy->active_power[chan]);
#endif
}
} else { // Powered off
Energy->voltage[0] = 0;
Energy->voltage[1] = 0;
Energy->active_power[0] = Energy->active_power[1] = 0;
Energy->current[0] = Energy->current[1] = 0;
}
}
void Bl09XXSerialInput(void) {
while (Bl09XXSerial->available()) {
yield();
uint8_t serial_in_byte = Bl09XXSerial->read();
if (!Bl09XX.received && (BL09XX_PACKET_HEADER == serial_in_byte)) {
Bl09XX.received = true;
Bl09XX.byte_counter = 0;
}
if (Bl09XX.received) {
Bl09XX.rx_buffer[Bl09XX.byte_counter++] = serial_in_byte;
if (Bl09XX.buffer_size == Bl09XX.byte_counter) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Rx %*_H"), Bl09XX.buffer_size, Bl09XX.rx_buffer);
uint8_t checksum = BL09XX_READ_COMMAND | Bl09XX.address;
for (uint32_t i = 0; i < Bl09XX.buffer_size -1; i++) { checksum += Bl09XX.rx_buffer[i]; }
checksum ^= 0xFF;
if (checksum == Bl09XX.rx_buffer[Bl09XX.buffer_size -1]) {
Energy->data_valid[0] = 0;
bool ok;
if (BL0942_MODEL == Bl09XX.model) {
ok = Bl09XXDecode42();
} else {
ok = Bl09XXDecode3940();
}
if (ok) { Bl09XXUpdateEnergy(); }
Bl09XX.received = false;
return;
} else {
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE " received 0x%02X instead of 0x%02X"), Bl09XX.rx_buffer[Bl09XX.buffer_size -1], checksum);
#endif
do { // Sync buffer with data (issue #1907 and #3425)
memmove(Bl09XX.rx_buffer, Bl09XX.rx_buffer +1, Bl09XX.buffer_size -1);
Bl09XX.byte_counter--;
} while ((Bl09XX.byte_counter > 1) && (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]));
if (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE));
Bl09XX.received = false;
Bl09XX.byte_counter = 0;
}
}
}
}
}
}
/********************************************************************************************/
void Bl09XXEverySecond(void) {
if (Energy->data_valid[0] > ENERGY_WATCHDOG) {
Bl09XX.voltage = 0;
memset(Bl09XX.current, 0, sizeof(Bl09XX.current));
memset(Bl09XX.power, 0, sizeof(Bl09XX.power));
} else {
// Calculate energy by using active power
for (uint32_t channel = 0; channel < Energy->phase_count; channel++) {
Energy->kWhtoday_delta[channel] += Energy->active_power[channel] * 1000 / 36;
}
EnergyUpdateToday();
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Poll"));
Bl09XXSerial->flush();
Bl09XXSerial->write(BL09XX_READ_COMMAND | Bl09XX.address);
Bl09XXSerial->write(BL09XX_FULL_PACKET);
}
void Bl09XXInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Bl09XXSerial = new TasmotaSerial(Bl09XX.rx_pin, Pin(GPIO_TXD), 1);
if (Bl09XXSerial->begin(Bl09XX.baudrate)) {
if (Bl09XXSerial->hardwareSerial()) {
ClaimSerial();
}
#ifdef ESP32
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Serial UART%d"), Bl09XXSerial->getUart());
#endif
if (HLW_UREF_PULSE == EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION)) {
for (uint32_t i = 0; i < 2; i++) {
EnergySetCalibration(ENERGY_POWER_CALIBRATION, bl09xx_pref[Bl09XX.model], i);
EnergySetCalibration(ENERGY_VOLTAGE_CALIBRATION, bl09xx_uref[Bl09XX.model], i);
EnergySetCalibration(ENERGY_CURRENT_CALIBRATION, bl09xx_iref[Bl09XX.model], i);
}
}
if ((BL0940_MODEL == Bl09XX.model) && (EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION) < (BL0940_IREF / 20))) {
uint32_t current_calibration = EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION) * 100;
EnergySetCalibration(ENERGY_CURRENT_CALIBRATION, current_calibration);
}
if (BL0942_MODEL != Bl09XX.model) {
#ifdef DEBUG_BL09XX
AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Send Init string"));
#endif
Energy->use_overtemp = true; // Use global temperature for overtemp detection
for (uint32_t i = 0; i < 5; i++) {
uint8_t crc, byte;
crc = byte = BL09XX_WRITE_COMMAND | Bl09XX.address;
Bl09XXSerial->write(byte);
for (uint32_t j = 0; j < 4; j++) {
crc += byte = bl09xx_init[i][j];
Bl09XXSerial->write(byte);
}
Bl09XXSerial->write(0xFF ^ crc);
delay(1);
}
} else {
Energy->use_overtemp = false; // Use global temperature for overtemp detection
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Bl09XXPreInit(void) {
if (PinUsed(GPIO_TXD)) {
Bl09XX.model = BL09XX_MODEL;
Bl09XX.baudrate = 4800;
if (PinUsed(GPIO_BL0939_RX)) {
Bl09XX.model = BL0939_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0939_RX);
}
else if (PinUsed(GPIO_BL0940_RX)) {
Bl09XX.model = BL0940_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0940_RX);
}
else if (PinUsed(GPIO_BL0942_RX, GPIO_ANY)) {
Bl09XX.model = BL0942_MODEL;
Bl09XX.rx_pin = Pin(GPIO_BL0942_RX, GPIO_ANY);
uint32_t option = GetPin(Bl09XX.rx_pin) - AGPIO(GPIO_BL0942_RX); // 0 .. 7
Bl09XX.support_negative = (option > 3); // 4 .. 7
uint32_t baudrate = option & 0x3; // 0 .. 3 and 4 .. 7
Bl09XX.baudrate <<= baudrate; // Support 1 (4800), 2 (9600), 3 (19200), 4 (38400)
}
if (Bl09XX.model != BL09XX_MODEL) {
Bl09XX.address = bl09xx_address[Bl09XX.model];
Bl09XX.buffer_size = bl09xx_buffer_size[Bl09XX.model];
Bl09XX.rx_buffer = (uint8_t*)(malloc(Bl09XX.buffer_size));
if (Bl09XX.rx_buffer != nullptr) {
Energy->voltage_common = true; // Use common voltage
Energy->frequency_common = true; // Use common frequency
Energy->use_overtemp = true; // Use global temperature for overtemp detection
Energy->phase_count = bl09xx_phase_count[Bl09XX.model]; // Handle two channels as two phases
TasmotaGlobal.energy_driver = XNRG_14;
AddLog(LOG_LEVEL_DEBUG,PSTR("BL9: Enabling BL09%02d at %d bps"), bl09xx_type[Bl09XX.model], Bl09XX.baudrate);
}
}
}
}
bool Bl09XXCommand(void) {
bool serviced = true;
uint32_t channel = (2 == XdrvMailbox.index) && (Energy->phase_count > 1) ? 1 : 0;
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
if ((CMND_POWERCAL == Energy->command_code) ||
(CMND_VOLTAGECAL == Energy->command_code) ||
(CMND_CURRENTCAL == Energy->command_code)) {
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy->command_code) { // xxx.xx W
if (XdrvMailbox.data_len && Bl09XX.power[channel]) {
XdrvMailbox.payload = (Bl09XX.power[channel] * 100) / value;
}
}
else if (CMND_VOLTAGESET == Energy->command_code) { // xxx.xx V
if (XdrvMailbox.data_len && Bl09XX.voltage) {
XdrvMailbox.payload = (Bl09XX.voltage * 100) / value;
}
}
else if (CMND_CURRENTSET == Energy->command_code) { // xxx.xx mA
if (XdrvMailbox.data_len && Bl09XX.current[channel]) {
XdrvMailbox.payload = ((Bl09XX.current[channel] * 100) / value) * 1000;
}
}
else serviced = false; // Unknown command
return serviced;
}
void Bl09XXShow(bool json) {
if (BL0942_MODEL != Bl09XX.model) {
if (json) {
ResponseAppend_P(JSON_SNS_F_TEMP, "BL09XX", Settings->flag2.temperature_resolution, &Bl09XX.temperature);
if (0 == TasmotaGlobal.tele_period) {
#ifdef USE_DOMOTICZ
DomoticzFloatSensor(DZ_TEMP, Bl09XX.temperature);
#endif // USE_DOMOTICZ
#ifdef USE_KNX
KnxSensor(KNX_TEMPERATURE, Bl09XX.temperature);
#endif // USE_KNX
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_Temp("", Bl09XX.temperature);
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg14(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_LOOP:
if (Bl09XXSerial) { Bl09XXSerialInput(); }
break;
case FUNC_EVERY_SECOND:
Bl09XXEverySecond();
break;
case FUNC_JSON_APPEND:
Bl09XXShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Bl09XXShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_COMMAND:
result = Bl09XXCommand();
break;
case FUNC_INIT:
Bl09XXInit();
break;
case FUNC_PRE_INIT:
Bl09XXPreInit();
break;
}
return result;
}
#endif // USE_BL09XX
#endif // USE_ENERGY_SENSOR