generated from arfc/elsevier-journal-article-template
-
Notifications
You must be signed in to change notification settings - Fork 3
/
benchmark.tex
357 lines (326 loc) · 15.3 KB
/
benchmark.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
\section{CNRS Benchmark} \label{sec:benchmark}
The CNRS Benchmark \cite{tiberga_results_2020} is a numerical
benchmark for multiphysics software dedicated to modeling \glspl{MSR}. It
consists of three phases and eight steps in total. Each
step is a well-defined subproblem for systematically assessing the
capabilities of \gls{MSR} software and pinpointing sources of discrepancies
between software. Phase 0 consists of three single-physics problems in fluid
dynamics, neutronics, and temperature, respectively. Phase 1 consists
of four coupled steady-state problems. Lastly, Phase 2 consists of one
coupled, time-dependent problem.
\begin{figure}[htb!]
\centering
\includegraphics[width=.6\columnwidth]{geometry}
\caption{2m$\times$2m 2D domain of the CNRS Benchmark. $U_{lid}$
represents the velocity along the top boundary. Various quantities are
measured along the centerlines AA' and BB' for comparison. From Tiberga et
al. \cite{tiberga_results_2020}.}
\label{fig:geometry}
\end{figure}
As shown in Figure \ref{fig:geometry}, the domain geometry is a 2m$\times$2m
square cavity filled with LiF-BeF$_2$-UF$_4$ molten salt at an initial
temperature of 900K \cite{tiberga_results_2020}.
Standard vacuum boundary conditions apply for neutron flux along all
boundaries whereby outgoing neutrons are considered lost, while homogeneous
boundary conditions apply for delayed neutron precursors. No-slip boundary
conditions apply for velocity variables in the cavity, except along the top
boundary for Steps 0.1, 0.3, 1.1, 1.2, and 1.4, which impose forced flow in the
form of lid-driven
cavity flow. For the temperature variable, all boundaries are insulated, and we
simulate salt cooling with the following volumetric heat sink equation:
%
\begin{align}
q'''(\vec{r}) &= \gamma \left(900 - T(\vec{r})\right) \label{eq:heat}
\shortintertext{where}
q''' &= \mbox{volumetric heat sink [W$\cdot$m$^{-3}$],}
\nonumber \\
\gamma &= \mbox{heat transfer coefficient [W$\cdot$m$^{-3}\cdot$K$^{-1}$],}
\nonumber \\
T(\vec{r}) &= \mbox{temperature at point $\vec{r}$ [K].} \nonumber
\end{align}
Tiberga et al. \cite{tiberga_results_2020} used Serpent 2
\cite{leppanen_serpent_2014} with the JEFF-3.1 library
\cite{koning_jeff-31_2006} to generate multigroup neutronics data for the
LiF-BeF$_2$-UF$_4$ salt in the domain at 900K, which they condensed into six
energy groups and eight precursor groups. We direct readers to their paper for
the group constant data \cite{tiberga_results_2020}. In addition, the
benchmark prescribes the following equations to govern the temperature
dependence in the cross sections and the neutron diffusion coefficients:
%
\begin{align}
\Sigma_i (T) &= \Sigma_i(T_{ref})
\frac{\rho_{fuel}(T)}{\rho_{fuel}(T_{ref})}
\shortintertext{and}
D (T) &= D(T_{ref})
\frac{\rho_{fuel}(T_{ref})}{\rho_{fuel}(T)}
\shortintertext{where}
\Sigma_i &= \mbox{relevant macroscopic cross section [cm${-1}$],}
\nonumber \\
D &= \mbox{neutron diffusion coefficient [cm$^2\cdot$s$^{-1}$],}
\nonumber \\
\rho_{fuel} &= \mbox{density of the fuel salt [kg$\cdot$m$^{-3}$],}
\nonumber \\
T_{ref} &= \mbox{reference temperature} = 900\mbox{ K}. \nonumber
\end{align}
The benchmark also prescribes incompressible Navier-Stokes flow with the
Boussinesq approximation for evaluating the salt flow in the
domain but does not restrict the type of neutronics model.
The following subsections briefly detail each benchmark step, with Table
\ref{table:benchmark} listing the relevant input parameters and observables.
\begin{table*}[tp!]
\caption{Input parameters and observables of each benchmark step.}
\centering
\footnotesize
\begin{tabular}{p{.05\textwidth} p{.4\textwidth} p{.6\textwidth}}
\toprule
\textbf{Step} & \textbf{Input parameters} & \textbf{Observables} \\
\midrule
0.1 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item $U_{lid} = 0.5$ m$\cdot$s$^{-1}$
\end{itemize}\vspace*{-\baselineskip}\mbox{} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Velocity components $(u_x,u_y)$ along AA' and BB'
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\midrule
0.2 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item $U_{lid} = 0$ m$\cdot$s$^{-1}$
\item $T = 900$ K
\item $P = 1$ GW
\end{itemize} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Fission rate density $\sum^6_g \Sigma_{f,g} \phi_g(\vec{r})$ along AA'
\item Reactivity $\rho$
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\midrule
0.3 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Fixed flow field from Step 0.1 for
$U_{lid} = 0.5$ m$\cdot$s$^{-1}$
\item Fixed heat source distribution
$\sum^6_{g} \epsilon_g \Sigma_{f,g} \phi_g(\vec{r})$ from Step 0.2
\item $\gamma = 10^6$ W$\cdot$m$^{-3}\cdot$K$^{-1}$
\end{itemize} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Temperature $T$ along AA' and BB'
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\midrule
1.1 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Fixed flow field from Step 0.1 for
$U_{lid} = 0.5$ m$\cdot$s$^{-1}$
\item $T = 900$ K
\item $P = 1$ GW
\end{itemize} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Delayed neutron source $\sum^8_i \lambda_i C_i$ along AA' and BB'
\item Reactivity change between Step 1.1 and Step 0.2,
$\Delta \rho = \rho - \rho_{s_{0.2}}$
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\midrule
1.2 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Fixed flow field from Step 0.1 for
$U_{lid} = 0.5$ m$\cdot$s$^{-1}$
\item $P = 1$ GW
\item $\gamma = 10^6$ W$\cdot$m$^{-3}\cdot$K$^{-1}$
\end{itemize}\vspace*{-\baselineskip}\mbox{} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Temperature $T$ along AA' and BB'
\item Reactivity change between Step 1.2 and Step 1.1,
$\Delta\rho = \rho - \rho_{s_{1.1}}$
\item Change in fission rate density
$\sum^6_g \Sigma_{f,g} \phi_g(\vec{r}) -
\left[\sum^6_g \Sigma_{f,g} \phi_g(\vec{r})\right]_{s_{0.2}}$
\end{itemize} \\
\midrule
1.3 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item $P = 1$ GW
\item $U_{lid} = 0$ m$\cdot$s$^{-1}$
\item $\gamma = 10^6$ W$\cdot$m$^{-3}\cdot$K$^{-1}$
\end{itemize}\vspace*{-\baselineskip}\mbox{} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Velocity components $(u_x, u_y)$ along AA' and BB'
\item Temperature $T$ along AA' and BB'
\item Delayed neutron source $\sum^8_i \lambda_i C_i$ along AA' and BB'
\item Reactivity change from Step 0.2
$\Delta\rho = \rho - \rho_{s_{0.2}}$
\end{itemize} \\
\midrule
1.4 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item $\gamma = 10^6$ W$\cdot$m$^{-3}\cdot$K$^{-1}$
\item $P$ variable in the range $[0,1]$ GW with a step of 0.2 GW
\item $U_{lid}$ variable in the range $[0,0.5]$ m$\cdot$s$^{-1}$
with a step of 0.1 m$\cdot$s$^{-1}$
\end{itemize} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Reactivity change between Step 1.4 and Step 0.2,
$\Delta\rho = \rho - \rho_{s_{0.2}}$, for all permutations of $P$
and $U_{lid}$ values
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\midrule
2.1 &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item $\gamma = 10^6$ W$\cdot$m$^{-3}\cdot$K$^{-1}$
\item Steady-state solution from Step 1.4 for $U_{lid} = 0.5$
m$\cdot$s$^{-1}$ and $P = 1.0$ GW
\end{itemize} &
\begin{itemize}[nosep,noitemsep,left=0pt,
before={\begin{minipage}[t]{\hsize}},
after ={\end{minipage}}]
\item Power gain and shift as a function of the perturbation frequency
\end{itemize}\vspace*{-\baselineskip}\mbox{} \\
\bottomrule
\end{tabular}
\label{table:benchmark}
\end{table*}
\subsection{Phase 0: Single physics}
In this preliminary phase, the steady-state solutions of
individual physics are studied without any multiphysics coupling.
\subsubsection{Step 0.1: Velocity field}
This step investigates the steady-state incompressible flow distribution in the
domain from a lid-driven cavity flow by imposing a non-zero horizontal
velocity along the top boundary. In addition, this step provides a fixed
velocity field for Steps 0.3, 1.1, and 1.2.
\subsubsection{Step 0.2: Neutronics}
This step tests neutronics capabilities through a criticality eigenvalue
problem in a static, isothermal fuel configuration by solving for the fission
rate density and effective multiplication factor $k_{eff}$. This step also aims
to identify deviations in results attributable to differences in neutronics
models and approximations. The total power $P$ is fixed to normalize the
neutron fluxes. For neutronics models conforming to the six neutron energy
group structure provided by Tiberga et al. \cite{tiberga_results_2020},
fission rate density is calculated as:
%
\begin{align}
\text{Fission rate density} =& \sum^6_g \Sigma_{f,g} \phi_g(\vec{r})
\shortintertext{where}
\Sigma_{f,g} =& \text{ macroscopic fission cross section for neutron}
\nonumber \\
&\text{ in group $g$,} \nonumber \\
\phi_g =& \text{ neutron flux in group $g$.} \nonumber
\end{align}
\subsubsection{Step 0.3: Temperature}
This step assesses passive scalar transport capability for determining the
temperature distribution independently from
the fluid flow and neutronics problems by imposing fixed velocity and fission
heat source distributions from Steps 0.1 and 0.2, respectively. Similar to the
fission rate density, the heat source distribution in six-group neutronics
models is calculated as:
%
\begin{align}
\text{Heat source distribution} =& \sum^6_{g} \epsilon_g \Sigma_{f,g}
\phi_g(\vec{r})
\shortintertext{where}
\epsilon_g =& \text{ average fission energy released by neutrons}
\nonumber \\
&\text{ in group $g$.} \nonumber
\end{align}
\subsection{Phase 1: Steady-state coupling}
Phase 1 builds towards simulating a fully-coupled multiphysics steady-state
system by gradually introducing coupling between various physics present in
a fast-spectrum molten salt system. All simulations are solved as steady-state
criticality eigenvalue problems.
\subsubsection{Step 1.1: Circulating fuel}
This step investigates the effects of fuel salt flow on the neutronics,
namely the reactivity loss from the movement of precursors. The delayed neutron
precursors are allowed to drift under the fixed velocity field from Step 0.1
while keeping the temperature $T$ fixed at 900 K. With eight precursor groups,
the delayed neutron source is calculated as:
%
\begin{align}
\text{Delayed neutron source} =& \sum^8_i \lambda_i C_i
\shortintertext{where}
\lambda_i =& \text{ average decay constant of delayed neutron} \nonumber \\
&\text{ precursors in precursor group $i$,} \nonumber \\
C_i =& \text{ concentration of delayed neutron precursors in}
\nonumber \\
&\text{ precursor group $i$.} \nonumber
\end{align}
\subsubsection{Step 1.2: Power coupling}
This step assesses the capability to accurately reproduce the change in
neutron flux distribution due to the fuel density reactivity feedback between
the neutron fluxes and the temperature distribution. We solve for the
steady-state neutron flux and temperature distributions under the fixed
velocity field from Step 0.1 and a volumetric heat sink described by Equation
\ref{eq:heat}.
\subsubsection{Step 1.3: Buoyancy}
Building on the previous step, we replace the fixed velocity field with
buoyancy-driven flow arising from the temperature gradients for a fully-coupled
multiphysics problem without forced flow. Barring any significant discrepancies
in the previous steps, this step assesses the capability to reproduce the
correct buoyancy-driven flow profile and the subsequent effects on the
neutronics and temperature distribution due to precursor drift and fuel density
reactivity feedback.
\subsubsection{Step 1.4: Full coupling}
This step introduces forced flow to the fully-coupled problem through the
non-zero $U_{lid}$ boundary
condition. Thus, this problem most closely represents a molten salt system with
1) flow driven by an external force, 2) buoyancy flow effects, 3) \gls{DNP}
drift, and 4) thermal feedback effects on the neutronics. We solve for the
$k_{eff}$ under a range of $U_{lid}$ and $P$ values given in Table
\ref{table:benchmark}.
\subsection{Phase 2: Time dependent coupling}
In this phase, the transient response of the fully coupled nonlinear system is
studied.
\subsubsection{Step 2.1: Forced convection transient}
Linear perturbation analyses are performed by introducing periodic
perturbations to the heat transfer coefficient $\gamma$ and studying the gain
and phase shift of the response in the total power $P$. For the initial
conditions, the steady-state solution from Step 1.4 with
$U_{lid} = 0.5$ m$\cdot$s$^{-1}$ and $P = 1$ GW is used. This initial
configuration is made exactly critical by scaling the neutron source terms,
from fission and \gls{DNP} decay, by the inverse of the criticality eigenvalue
solution from Step 1.4.
$\gamma$ is uniformly perturbed according to small-amplitude sine waves given
as:
%
\begin{align}
\gamma =& \gamma_0 \left[ 1 + 0.1\sin\left(2 \pi f \right) \right]
\shortintertext{where}
\gamma_0 =& 10^6 \mbox{ W$\cdot$m$^{-3}\cdot$K$^{-1}$}, \nonumber \\
f \in& \left\lbrace 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 \right\rbrace
\mbox{ Hz.} \nonumber
\end{align}
The benchmark defines power gain as:
%
\begin{align}
\mbox{Power gain} =& \frac{\left(P_{max} - P_{avg}\right)/P_{avg}}{
\left(\gamma_{max} - \gamma_{avg}\right)/\gamma_{avg}}
\end{align}
%
The subscripts denote the maximum and time-averaged values of $P$ and $\gamma$.
\FloatBarrier