-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgenerate.py
218 lines (205 loc) · 10.5 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import sys, argparse, pickle, os, random
from importlib import import_module
import torch
import numpy as np
from decoder import predictors, decoders
#import adaptive_softmax.model as asmodel
path = os.path.realpath(__file__)
path = path[:path.rindex('/')+1]
sys.path.insert(0, os.path.join(path, 'lm/'))
sys.path.insert(0, os.path.join(path, 'utils/'))
sys.path.insert(0, os.path.join(path, 'entailment/'))
sys.path.insert(0, os.path.join(path, 'context/'))
sys.path.insert(0, os.path.join(path, 'word_level/'))
sys.path.insert(0, os.path.join(path, 'diction/'))
sys.path.insert(0, os.path.join(path, 'reprnn/'))
sys.path.insert(0, os.path.join(path, 'style/'))
sys.path.insert(0, os.path.join(path, 'adaptive_softmax/'))
sys.path.insert(0, os.path.join(path, 'word_rep/'))
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='input.txt',
help='text file containing initial strings to continue')
parser.add_argument('--skip', type=int, default=0,
help='number of lines to skip in data file before beginning')
parser.add_argument('--out', type=str, default='output.txt',
help='text file to write generations to')
parser.add_argument('--lm', type=str, default='lm.pt',
help='lm to use for decoding')
parser.add_argument('--dic', type=str, default='dic.pickle',
help='dic to use for lm')
parser.add_argument('--print', action='store_true',
help='whether to print output to stdout (in addition to writing it to a file)')
parser.add_argument('--both', action='store_true',
help='also include pure LM output')
parser.add_argument('--gen_disc_data', action='store_true',
help='generator discriminator data from LM')
parser.add_argument('--epochs', type=int, default=1,
help='how many times to go through the input file')
parser.add_argument('--verbosity', type=int, default=0,
help='how verbose to be during decoding')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--trip', action='store_true',
help='random seed')
## Learning
parser.add_argument('--learn', action='store_true')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--save_every', type=int, default=1)
## Decoding Stuff
parser.add_argument('--beam_size', type=int, default=10,
help='number of candidates in beam at every step')
parser.add_argument('--term', type=str, default='<end>',
help='what string to use as the end token')
parser.add_argument('--sep', type=str, default='</s>',
help='what string to use as the sentence seperator token')
parser.add_argument('--temp', type=float, default=None,
help='temperature, if using stochastic decoding')
parser.add_argument('--ranking_loss', action='store_true',
help='metaweight learning ranking loss')
parser.add_argument('--paragraph_level_score', action='store_true',
help='paragraph level score')
# Arbitrary Scorers
parser.add_argument('--scorers', type=str, default=None,
help='tsv with scorer information')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
print("Load model")
with open(args.lm, 'rb') as model_file:
model = torch.load(model_file)
model.eval()
with open(args.dic, 'rb') as dic_file:
dictionary = pickle.load(dic_file)
predictor = predictors.RNNPredictor(model, len(dictionary), asm=True)
print("Creating scorers and decoder")
scorer_config, scorers, coefs = [], [], []
if args.scorers:
with open(args.scorers) as scorer_file:
for line in scorer_file:
fields = line.strip().split('\t')
scorer_config.append(fields)
weight, path, classname = fields[:3]
weight = float(weight)
arg_scripts = fields[3]
module = import_module(path)
constructor = getattr(module, classname)
scorer = constructor(arg_scripts)
scorers.append(scorer)
coefs.append(weight)
if not args.trip:
decoder = decoders.BeamRerankDecoder(predictor,
scorers,
coefs,
learn=args.learn,
lr=args.lr,
ranking_loss=args.ranking_loss,
paragraph_level_score=args.paragraph_level_score,
beam_size=args.beam_size,
temperature=args.temp,
terms=[dictionary['</s>']],
forbidden=[dictionary['<unk>']],
sep=dictionary[args.sep],
verbosity=args.verbosity,
dictionary=dictionary)
lm_decoder = decoders.BeamRerankDecoder(predictor,
[],
[],
[],
[],
beam_size=args.beam_size,
temperature=args.temp,
terms=[dictionary['</s>']],
forbidden=[dictionary['<unk>']],
sep=dictionary[args.sep],
verbosity=args.verbosity,
dictionary=dictionary)
else:
decoder = decoders.BeamRerankDecoder(predictor,
scorers,
coefs,
learn=args.learn,
lr=args.lr,
ranking_loss=args.ranking_loss,
beam_size=args.beam_size,
temperature=args.temp,
terms=[dictionary['</s>'], dictionary['<end>']],
forbidden=[dictionary['<unk>'], dictionary['<beg>']],
sep=dictionary[args.sep],
verbosity=args.verbosity,
dictionary=dictionary)
lm_decoder = decoders.BeamRerankDecoder(predictor,
[],
[],
[],
[],
beam_size=args.beam_size,
temperature=args.temp,
terms=[dictionary['</s>'], dictionary['<end>']],
forbidden=[dictionary['<unk>'], dictionary['<beg>']],
sep=dictionary[args.sep],
verbosity=args.verbosity,
dictionary=dictionary)
print("Start decoding")
avg, a_n = None, 0
for i in range(args.epochs):
with open(args.data) as data_file, open(args.out, 'w') as out_file:
for i, line in enumerate(data_file):
if i < args.skip:
continue
if args.gen_disc_data:
init_tokens = line.strip().lower().split()
init_tokens_ints = [dictionary[token] for token in init_tokens]
else:
initial, continuation = line.split('\t')[:2]
init_tokens = initial.strip().lower().split()
true_cont_tokens = continuation.strip().lower().split()
true_cont_ints = [dictionary[token] for token in true_cont_tokens]
init_tokens_ints = [dictionary[token] for token in init_tokens]
if args.learn:
diff = decoder.decode(init_tokens_ints,
true_cont_ints)
out_str = '%f\n' % diff
elif args.gen_disc_data:
init = ' '.join(init_tokens)
lm_pred_tokens_ints = lm_decoder.decode(init_tokens_ints, itos=dictionary)
lm_pred_cont_tokens = [dictionary[token]
for token in lm_pred_tokens_ints[len(init_tokens):]]
lm_cont = ' '.join(lm_pred_cont_tokens)
out_str = '%s\n' % lm_cont
else:
pred_tokens_ints = decoder.decode(init_tokens_ints, itos=dictionary)
pred_cont_tokens = [dictionary[token]
for token in pred_tokens_ints[len(init_tokens):]]
init = ' '.join(init_tokens)
cont = ' '.join(pred_cont_tokens)
if args.both:
lm_pred_tokens_ints = lm_decoder.decode(init_tokens_ints, itos=dictionary)
lm_pred_cont_tokens = [dictionary[token]
for token in lm_pred_tokens_ints[len(init_tokens):]]
lm_cont = ' '.join(lm_pred_cont_tokens)
out_str = '%s***\t%s***\t%s\n' % (init, cont, lm_cont)
else:
out_str = '%s\t%s\n' % (init, cont)
out_file.write(out_str)
out_file.flush()
if args.print:
print(out_str, end='')
# Save coeffecients if learning them
if args.learn and (i+1) % args.save_every == 0:
with open(args.scorers, 'w') as out:
if avg is None:
avg = decoder.model.coefs.weight.data.cpu().squeeze().clone()
else:
avg += decoder.model.coefs.weight.data.cpu().squeeze()
a_n += 1
for s, coef in enumerate(avg.numpy() / a_n):
scorer_config[s][0] = str(coef)
out.write('%s\n' % '\t'.join(scorer_config[s]))
print(avg / a_n)