-
Notifications
You must be signed in to change notification settings - Fork 25
Quickstart
- Setup
- Declaring and initializing tensors
- Accessing tensor values
- Some basic math operations
- Einsum
- Other considerations
- Add
noe/src
into the include search path, and you are good to go with the basic.- In Lazarus IDE: Project > Project Options > Compiler Options > Paths. Then add the path to
noe/src
in "Other unit files (-Fu)".
- In Lazarus IDE: Project > Project Options > Compiler Options > Paths. Then add the path to
Noe provides optional (but recommended) integration with basic linear algebra subroutine (BLAS) to accelerate several functions, such as matrix multiplication (MatMul
). Noe uses BLAS implementation based on OpenBLAS. To install OpenBLAS:
- On Linux:
- Debian/Ubuntu/Kali: run
apt install libopenblas-base
.
- Debian/Ubuntu/Kali: run
- On Windows:
- Provide the libopenblas.dll.
- On OSX:
- Provide the libopenblas.dylib.
It is always recommended to compile the so/dll/dylib yourself, especially for Windows. Some precompiled one might be available out there, but I cannot guarantee the compatibility. Please refer to this link for more complete documentation about compiling OpenBLAS.
uses
noe.core, // --> main unit
noe.math // --> extending standard math unit
var
A, B, C: TTensor;
A tensor filled with a specific value:
{ 2x3 tensor filled with 1 }
A := CreateTensor([2, 3], 1);
PrintTensor(A);
[[1.00, 1.00, 1.00]
[1.00, 1.00, 1.00]]
A tensor of random values:
{ 2x2x3 tensor filled with randomized values }
B := CreateTensor([2, 2, 3]);
PrintTensor(B);
[[[0.83, 0.03, 0.96]
[0.68, 0.91, 0.04]]
[[0.45, 0.83, 0.70]
[0.56, 0.31, 0.77]]]
A tensor with specified values:
{ 2x3 tensor filled with values specified }
C := CreateTensor(
[2, 3], //--> target shape
[1., 2., 3., //--> the data
4., 5., 6.] //
);
PrintTensor(C);
WriteLn;
{ Reshape C into a 6x1 tensor }
C.Reshape([6, 1]);
PrintTensor(C);
[[1.00, 2.00, 3.00]
[4.00, 5.00, 6.00]]
[[1.00]
[2.00]
[3.00]
[4.00]
[5.00]
[6.00]]
A helper function RangeF(n)
is provided to generate an array of float
containing values from 0 to n-1. It can be paired with CreateTensor
to initialize a tensor:
A := CreateTensor([3,4,5], RangeF(60));
PrintTensor(A);
[[[ 0.00, 1.00, 2.00, 3.00, 4.00]
[ 5.00, 6.00, 7.00, 8.00, 9.00]
[10.00, 11.00, 12.00, 13.00, 14.00]
[15.00, 16.00, 17.00, 18.00, 19.00]]
[[20.00, 21.00, 22.00, 23.00, 24.00]
[25.00, 26.00, 27.00, 28.00, 29.00]
[30.00, 31.00, 32.00, 33.00, 34.00]
[35.00, 36.00, 37.00, 38.00, 39.00]]
[[40.00, 41.00, 42.00, 43.00, 44.00]
[45.00, 46.00, 47.00, 48.00, 49.00]
[50.00, 51.00, 52.00, 53.00, 54.00]
[55.00, 56.00, 57.00, 58.00, 59.00]]]
To access the value of a tensor we can use multidimensional indexing:
A := CreateTensor([3, 2, 3]);
WriteLn('A:');
PrintTensor(A);
WriteLn(sLineBreak + 'A at index [2]:');
PrintTensor(A.GetAt([2]));
WriteLn(sLineBreak + 'A at index [0, 1]:');
PrintTensor(A.GetAt([0, 1]));
WriteLn(sLineBreak + 'A at index [1, 1, 0]:');
PrintTensor(A.GetAt([1, 1, 0]));
A:
[[[0.97, 0.47, 0.57]
[0.08, 0.51, 0.13]]
[[0.43, 0.67, 0.55]
[0.93, 0.86, 0.84]]
[[0.00, 0.32, 0.03]
[0.57, 0.95, 0.32]]]
A at index [2]:
[[0.00, 0.32, 0.03]
[0.57, 0.95, 0.32]]
A at index [0, 1]:
[0.08, 0.51, 0.13]
A at index [1, 1, 0]:
0.93
Several basic math operations on tensors are also supported.
A := CreateTensor([3, 3], 1);
B := CreateTensor([3, 3]);
WriteLn('A:');
PrintTensor(A);
WriteLn('B:');
PrintTensor(B);
WriteLn('A + B:');
PrintTensor(A + B);
WriteLn('A - B:');
PrintTensor(A - B);
WriteLn('A * B:');
PrintTensor(A * B);
And some others:
A := CreateTensor([3,3]) + CreateTensor([3, 3], 1);
PrintTensor( Log10(A) );
PrintTensor( Log2(A) );
A := CreateTensor(
[2, 2],
[ 0., 30.,
45., 90.]
);
A := DegToRad(A); // Also check RadToDeg(A)
PrintTensor( Sin(A) );
PrintTensor( Cos(A) );
PrintTensor( Tan(A) );
A := CreateTensor(
[2, 2],
[1., 2.,
3., 4.]
);
A := A ** 2;
PrintTensor(A);
Please check noe.math.pas
for more covered functionalities.
I also implemented Einsum
(Einstein's summation convention) function. It mirrors (subset of) numpy's einsum functionality. Using the Einsum
, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion.
A := CreateTensor(
[3, 3],
[1, 2, 3,
4, 5, 6,
7, 8, 9]
);
B := CreateTensor([3, 4], 2);
WriteLn('A:'); printtensor(A); WriteLn();
WriteLn('B:'); printtensor(B); WriteLn();
WriteLn();
WriteLn('dot product AB:');
printtensor(Einsum('ij,jk->ik', [A, B]));
WriteLn();
WriteLn('element-wise product A o B:');
printtensor(Einsum('ij,ij->ij', [A, B]));
WriteLn();
WriteLn('diagonal of A:');
printtensor(Einsum('ii->i', [A]));
WriteLn();
WriteLn('sum of diagonal of A:');
printtensor(Einsum('ii', [A]));
WriteLn();
WriteLn('A transposed:');
printtensor(Einsum('ij->ji', [A]));
WriteLn();
WriteLn('sum of A along 1st dimension:');
printtensor(Einsum('ij->i', [A]));
WriteLn();
WriteLn('sum of A along 2nd dimension:');
printtensor(Einsum('ij->j', [A]));
WriteLn();
It also works on the operations of higher rank tensors:
A := CreateTensor(
[2, 2, 3],
[1, 2, 3,
4, 5, 6,
4, 5, 6,
7, 8, 9]
);
B := CreateTensor([3, 4], 2);
WriteLn('A:'); printtensor(A); WriteLn();
WriteLn('B:'); printtensor(B); WriteLn();
WriteLn('batch matrix multiplication of A & B:');
printtensor(Einsum('aij,jk->aik', [A, B]));
WriteLn();
WriteLn('A transposed w.r.t. dimension 2 & 3:');
printtensor(Einsum('ijk->ikj', [A]));
WriteLn();
{ Note: RangeF(60) generates an array of float from 0 to 59 }
A := CreateTensor([3,4,5], RangeF(60));
B := CreateTensor([4,3,2], RangeF(24));
WriteLn('tensor contraction:');
printTensor(Einsum('ijk,jil->kl', [A, B]));
WriteLn();
- Slow. The current implementation is painfully slow. Do not use it too much.
- The
Einsum
implementation is yet to be ready. There are some known notations which will output undesirable result:- Sum of entries
Einsum('ij->', [A])
- Bilinear transformation
Einsum('ik,jkl,il->ij', [A, B, C])
- Sum of entries
Please have a try, and open an issue if you find more nonfunctional notations. I will appreciate.
- No complex number handling yet.
- Performance is not of my primary concern, at least for now. Kindly note that I am a firm believer of a saying “premature optimization is the root of all evil". I want simply a quick proof of concept of what I am learning. But it is not too shabby either. Don't worry.