-
Notifications
You must be signed in to change notification settings - Fork 2
/
auroralightLondon2019.tex
383 lines (294 loc) · 11.6 KB
/
auroralightLondon2019.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
\documentclass[shadesubsections,trans,14pt,mathserif]{beamer}
\usepackage[danish]{babel}
%\usepackage[T1]{fontenc}
%\usepackage{fourier}
% Dokumentets sprog
%\usepackage{mathtools}
%\usepackage{pxfonts}
\usepackage{eulervm}
% Class options include: notes, notesonly, handout, trans,
% hidesubsections, shadesubsections,
% inrow, blue, red, grey, brown
% Theme for beamer presentation.
%\usepackage{beamertheme}
% Other themes include: beamerthemebars, beamerthemelined,
% beamerthemetree, beamerthemetreebars
\newcommand{\adv}{\ensuremath{\mathcal A}}
\newcommand{\F}{\ensuremath{\mathbb F}}
\newcommand{\set}[1]{\ensuremath{\left\{#1\right\}}}
\newcommand{\sett}[2]{\ensuremath{\left\{#1\right\}_{#2}}}
\newcommand{\enc}[1]{\ensuremath{\left[#1\right ]}}
\newcommand{\cm}{\ensuremath{\mathsf{cm}}}
\newcommand{\open}[1]{\ensuremath{\mathsf{open}(#1)}}
\newcommand{\verify}[1]{\ensuremath{\mathsf{verify}(#1)}}
\newcommand{\defeq}{\ensuremath{:=}}
\newcommand{\helper}{\ensuremath{\mathcal{H}}}
\newcommand{\ver}{\ensuremath{\mathcal{V}}}
\newcommand{\prv}{\ensuremath{\mathcal{P}}}
\title{\LARGE{Components of recent universal SNARKs}} % Enter your title between curly braces
\author{\Large{Ariel Gabizon}} % Enter your name between curly braces
\institute{\normalsize{Protocol Labs}} % Enter your institute name between curly braces
\date{} % Enter the date or \today between curly braces
%\usefonttheme{professionalfonts}
%\usefonttheme[onlymath]{serif}
\begin{document}
\boldmath
% Creates title page of slide show using above information
\begin{frame}
\titlepage
\end{frame}
\note{Talk for 30 minutes} % Add notes to yourself that will be displayed when
% typeset with the notes or notesonly class options
%\section[Outline]{}
% Creates table of contents slide incorporating
% all \section and \subsection commands
%\begin{frame}
%\tableofcontents
%\end{frame}
\begin{frame}
\frametitle{30 seconds of philosophy: \\ SNARKs and the meaning of life} % Insert frame title between curly braces
As the world gets increasingly distributed and digital, SNARKs help us ``keep a grip on reality'', by ensuring the data we receive is anchored in reality.\\
\vspace{0.4in}
In this context, they are vast generalization of hashes and digital signatures.
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{Evaluating prover polynomials succinctly} % Insert frame title between curly braces
Since the beginning of time (LFKN, 1990) humanity has been trying to verify prover polynomial evaluations.\\
\end{frame}
\begin{frame}
\frametitle{Evaluating prover polynomials succinctly} % Insert frame title between curly braces
%Since the beginning of time (LFKN, 1989) humanity has been trying to verify prover polynomial evaluations.\\
\vspace{0.4in}
\textbf{Verifer:} - ``Choose a degree 10 polynomial $f$ and keep it in your head''\\
\textbf{Prover:} - ``OK''\\
\textbf{Verifer:} - ``What is $f(7)$?''\\
\textbf{Prover:} - ``$10$''\\
\end{frame}
\begin{frame}
\frametitle{Evaluating prover polynomials succinctly} % Insert frame title between curly braces
\textbf{The hard-working honest way} - Low degree testing [BFL91,...] \small{(also PCPPs/IOPPs)}
%(\footnotesize{(and PCPPs,IOPPS)})
\end{frame}
\begin{frame}
\frametitle{Evaluating prover polynomials succinctly} % Insert frame title between curly braces
%Since the beginning of time (1989) humanity has been trying to verify prover polynomial evaluations.
%\vspace{0.4in}
\textbf{The hard-working honest way} - Low degree testing/PCPP/IOPPs
\vspace{0.4in}
\textbf{The correct* way} - Polynomial commitment scheme (with SRS).
\vspace{0.8in}
\footnotesize{*The opinions expressed in this presentation are objective reality}
\end{frame}
\begin{frame}
\frametitle{Notation:``an encoding of $x$''} % Insert frame title between curly braces
%Since the beginning of time (1989) humanity has been trying to verify prover polynomial evaluations.
%\vspace{0.4in}
%\textbf{Notation:}
$\enc{x}\defeq x\cdot g = g+\ldots+g$ ($x$ times).
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{Notation:``an encoding of $x$''} % Insert frame title between curly braces
%Since the beginning of time (1989) humanity has been trying to verify prover polynomial evaluations.
%\vspace{0.4in}
%\textbf{Notation:}
$\enc{x}\defeq x\cdot g = g+\ldots+g$ ($x$ times).\\
\vspace{1in}
\emph{\small{You can imagine it means $g^x$, if it helps you sleep better.}}
\end{frame}
\begin{frame}
\frametitle{The KZG polynomial commitment scheme} % Insert frame title between curly braces
SRS: \enc{1},\enc{x},\ldots,\enc{x^d}, for random $x\in \F$.\\
\vspace{0.4in}
$f(X) = \sum_{i=0}^d a_i X^i$\\
\vspace{0.4in}
$\cm(f)\defeq \sum_{i=0}^d a_i \enc{x^i}= \enc{f(x)}$\\
\vspace{0.4in}
\end{frame}
\begin{frame}
SRS: \enc{1},\enc{x},\ldots,\enc{x^d},\\
for random $x\in \F$.
\vspace{0.4in}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$
\vspace{0.4in}
\end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
\textbf{exercise} - using pairing, define:\\
\vspace{0.2in}
$\verify{\cm,\pi,z,i}$,
where $z$ is allegedly $f(i)$
\end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\end{frame}
\begin{frame}
$\cm(f)\defeq \enc{f(x)}$\\
\vspace{0.4in}
$\open{f,i}\defeq \enc{h(x)}$, where
$h(X)\defeq \frac{f(X)-f(i)}{X-i}$\\
\vspace{0.4in}
$\verify{\cm,\pi,z,i}:$
\[e(\cm-\enc{z},\enc{1}) \stackrel{?}{=} e(\pi, \enc{x-i})\]
\vspace{0.4in}
\textbf{Thm}{\footnotesize{[KZG,MBKM]}}: \emph{This works.}
\end{frame}
\begin{frame}
\frametitle{Application: Proof of retrievability}
\end{frame}
\begin{frame}
\frametitle{Application: Proof of retrievability}
\emph{Server:} Commit to file as coefficients \set{a_0,\ldots,a_d} of polynomial $f$.\\
\vspace{0.4in}
\emph{Client:} Time-to-time query $f$ at a random point $r$.\\
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{Application: Proof of retrievability}
\emph{Server:} Commit to file as coefficients \set{a_0,\ldots,a_d} of polynomial $f$.\\
\vspace{0.4in}
\emph{Client:} Time-to-time query $f$ at a random point $r$.\\
\vspace{0.4in}
\emph{Probability of server computing $f(r)$ correctly w/o remembering all coeffs of $f$ is negligible.}
\end{frame}
\begin{frame}
\frametitle{Application: The Sonic helper \small{[MBKM19]}}
Bi-variate $S(X,Y)$, evaluation points \sett{(x_j,y_j)}{j\in \set{1..t}}, values \set{z_j} \\
\end{frame}
\begin{frame}
\frametitle{Application: The Sonic helper \small{[MBKM19]}}
Bi-variate $S(X,Y)$, evaluation points \sett{(x_j,y_j)}{j\in \set{1..t}}, values \set{z_j} \\
\vspace{0.4in}
Helper $\helper$ wants to convince verifier $\ver$ that $\forall j\in \set{1..t}$, $S(x_j,y_j)=z_j$.\\
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{Application: The Sonic helper \small{[MBKM19]}}
Bi-variate $S(X,Y)$, evaluation points \sett{(x_j,y_j)}{j\in \set{1..t}}, values \set{z_j} \\
\vspace{0.4in}
Helper $\helper$ wants to convince verifier $\ver$ that $\forall j\in \set{1..t}$, $S(x_j,y_j)=z_j$.\\
\vspace{0.4in}
$\ver$'s work: only \emph{one} evaluation of $S$!
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\end{enumerate}
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\end{enumerate}
\vspace{0.4in}
\emph{If $\helper$ would convince $\ver$ $S_j$'s are correct, he could just open them at $x_j$. }
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\item $\ver$ chooses random $u\in \F$.
\item $\helper$ sends $C\defeq \cm(S(u,Y))$.
\end{enumerate}
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\item $\ver$ chooses random $u\in \F$.
\item $\helper$ sends $C\defeq \cm(S(u,Y))$.
\item $\forall j$, $\helper$ opens $C$ at $y_j$ and $S_j$ at $u$. $\ver$ checks they open to same value.
\end{enumerate}
\vspace{0.4in}
\emph{At this point $\ver$ knows $S_j$'s are correct \textbf{if} $C$ is correct.}
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\item $\ver$ chooses random $u\in \F$.
\item $\helper$ sends $C\defeq \cm(S(u,Y))$.
\item $\forall j$, $\helper$ opens $C$ at $y_j$ and $S_j$ at $x_j$. $\ver$ checks they open to same value.
\item $\ver$ chooses random $v\in \F$ and computes $s(u,v)$.
\end{enumerate}
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{The Sonic helper \small{[MBKM19]}}
\begin{enumerate}
\item $\forall j$, $\helper$ sends $S_j \defeq \cm(S(X,y_j))$.
\item $\ver$ chooses random $u\in \F$.
\item $\helper$ sends $C\defeq \cm(S(u,Y))$.
\item $\forall j$, $\helper$ opens $C$ at $y_j$ and $S_j$ at $x_j$. $\ver$ checks they open to same value.
\item $\ver$ chooses random $v\in \F$ and computes $s(u,v)$.
\item $\helper$ opens $C$ at $v$, and $\ver$ checks it opens to $s(u,v)$.
\end{enumerate}
\vspace{0.4in}
\end{frame}
%\small{[BCRSVW19, G19]}
\begin{frame}
\frametitle{3rd application: sumchecks }
\end{frame}
\begin{frame}
\frametitle{3rd application: sumchecks}
$\prv$ has polynomial $f$. $H\subset \F$. \\
\vspace{0.4in}
$\ver$ wants to check:
\[\sum_{x\in H} f(x) =0\]
\end{frame}
\begin{frame}
\frametitle{The Aurora trick for sumcheck \small{[BCRSVW19]}}
\begin{lemma}
When $H\subset \F$ is a multiplicative subgroup of size $n$, and $deg(g)<n$
\[\sum_{x\in H} g(x) =0\]
iff $g$ has constant coefficient $0$.
\end{lemma}
\vspace{0.4in}
\end{frame}
\begin{frame}
\frametitle{The Aurora trick for sumcheck \small{[BCRSVW19]}}
$Z_H \defeq \prod_{x\in H}(X-x)$
\vspace{0.4in}
By lemma suffices to show $g_1,g_2$, $deg(g_2)<n-1$ such that
\[ f(X)\equiv g_1(X)\cdot Z_H(X) +X\cdot g_2(X) \]
\end{frame}
\begin{frame}
\frametitle{AuroraLight \small{[G19]}}
Check $f$ has this form by sending commitments to $g_1,g_2$,
and openning $f,g_1,g_2$ at random point.\\
\vspace{0.4in}
% Using Aurora+Sonic ideas:
% \begin{corollary}
% Universal SNARK with prover almost as fast as {\small{[Groth16]}}
% (But longer proofs than Sonic, and no fully succinct mode).
% \end{corollary}
%
\end{frame}
\begin{frame}
\frametitle{AuroraLight \small{[G19]}}
Check $f$ has this form by sending commitments to $g_1,g_2$,
and openning $f,g_1,g_2$ at random point.\\
\vspace{0.4in}
Using Aurora+Sonic ideas:
\begin{corollary}
Universal SRS SNARK with prover almost as fast as {\small{[Groth16]}}
(But longer proofs than Sonic, and no fully succinct mode).
\end{corollary}
\end{frame}
\end{document}