-
Notifications
You must be signed in to change notification settings - Fork 33
/
config.yaml
executable file
·50 lines (44 loc) · 2.21 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
data :
name: MVTec #MVTec #MTD #VisA
data_dir: datasets/MVTec #MVTec #VisA #MTD
category: screw #['carpet', 'bottle', 'hazelnut', 'leather', 'cable', 'capsule', 'grid', 'pill', 'transistor', 'metal_nut', 'screw','toothbrush', 'zipper', 'tile', 'wood']
# ['candle', 'capsules', 'cashew', 'chewinggum', 'fryum', 'macaroni1', 'macaroni2', 'pcb1', 'pcb2' ,'pcb3', 'pcb4', 'pipe_fryum']
image_size: 256
batch_size: 32 # 32 for DDAD and 16 for DDADS
DA_batch_size: 16 #16 for MVTec and [macaroni2, pcb1] in VisA, and 32 for other categories in VisA
test_batch_size: 16 #16 for MVTec, 32 for VisA
mask : True
input_channel : 3
model:
DDADS: False
checkpoint_dir: checkpoints/MVTec #MTD #MVTec #VisA
checkpoint_name: weights
exp_name: default
feature_extractor: wide_resnet101_2 #wide_resnet101_2 # wide_resnet50_2 #resnet50
learning_rate: 3e-4
weight_decay: 0.05
epochs: 3000
load_chp : 2000 # From this epoch checkpoint will be loaded. Every 250 epochs a checkpoint is saved. Try to load 750 or 1000 epochs for Visa and 1000-1500-2000 for MVTec.
DA_epochs: 4 # Number of epochs for Domain adaptation.
DA_chp: 4
v : 1 #7 # 1 for MVTec and cashew in VisA, and 7 for VisA (1.5 for cashew). Control parameter for pixel-wise and feature-wise comparison. v * D_p + D_f
w : 2 # Conditionig parameter. The higher the value, the more the model is conditioned on the target image. "Fine tuninig this parameter results in better performance".
w_DA : 3 #3 # Conditionig parameter for domain adaptation. The higher the value, the more the model is conditioned on the target image.
DLlambda : 0.1 # 0.1 for MVTec and 0.01 for VisA
trajectory_steps: 1000
test_trajectoy_steps: 250 # Starting point for denoining trajectory.
test_trajectoy_steps_DA: 250 # Starting point for denoining trajectory for domain adaptation.
skip : 25 # Number of steps to skip for denoising trajectory.
skip_DA : 25
eta : 1 # Stochasticity parameter for denoising process.
beta_start : 0.0001
beta_end : 0.02
device: 'cuda' #<"cpu", "gpu", "tpu", "ipu">
save_model: True
num_workers : 2
seed : 42
metrics:
auroc: True
pro: True
misclassifications: False
visualisation: False