Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

我的檔案路徑可以用window寫法嗎 #37

Open
henrychou1233 opened this issue Jul 15, 2024 · 0 comments
Open

我的檔案路徑可以用window寫法嗎 #37

henrychou1233 opened this issue Jul 15, 2024 · 0 comments

Comments

@henrychou1233
Copy link

data:
DA_batch_size: 30
batch_size: 30
category: grid
data_dir: /mnt/d/download2/aaa/Dynamic-noise-AD-master/MVTec/
image_size: 256
imput_channel: 4
manualseed: -1
mask: true
name: MVTec
metrics:
image_level_AUROC: true
image_level_F1Score: true
pixel_level_AUROC: true
pixel_level_F1Score: true
pro: true
threshold:
manual_image: null
manual_pixel: null
method: adaptive
model:
DA_epochs: 1 # nr. of fine tune epochs for fe
DA_fine_tune: 1
DA_learning_rate: 1e-4
DA_rnd_step: true # pick noising level for DA according to uniform distribution
dynamic_steps: true # Dynamic implicit conditioning
KNN_metric: l1
anomap_excluded_layers: # excluded feature layers for anomaly map creation

  • 0
    anomap_weighting: 0.85 # weight for latent anomaly map
    attn_reso:
  • 32
  • 16
  • 8
  • 4
    beta_end: 0.0195
    beta_start: 0.0015
    channel_mults:
  • 1
  • 2
  • 2
  • 4
  • 4
    checkpoint_dir: /mnt/d/download2/aaa/Dynamic-noise-AD-master/checkpoints/MVTec/
    checkpoint_epochs: 300
    checkpoint_name: weights
    consistency_decoder: 0 # consistency decoder for better image quality at the cost of additional runtime
    device: cuda
    distance_metric_eval: combined
    downscale_first: 1 # noiseless scaling
    ema: true
    ema_rate: 0.999
    epochs: 9
    eta: 0 # 0 corresponds to DDIM sampling and 1 to DDPM
    eta2: 4 # DDAD conditioning
    exp_name: default
    fe_backbone: resnet34
    head_channel: -1
    knn_k: 20
    latent: true
    latent_backbone: VAE
    latent_size: 32
    learning_rate: 1e-4
    multi_gpu: false
    n_head: 8
    noise: Gaussian
    noise_sampling: 0 # noise image or not
    num_workers: 30
    optimizer: AdamW
    save_model: true
    schedule: linear
    seed: 42
    selected_features: # selected layer for KNN search
  • 1
    skip: 8 # steps to skip during inference
    skip_DA: 8 # steps to skip during domain adaptation
    test_trajectoy_steps: 80 # maximum noising level
    test_trajectoy_steps_DA: 80 # maximum noising level for domain adaptation
    trajectory_steps: 1000
    unet_channel: 192
    visual_all: true # additional visual output of heatmaps
    weight_decay: 0.01
    以上是我的config包

但都一直偵測不到
(AI) PS D:\download2\aaa\Dynamic-noise-AD-master> python main.py
2024-07-15 10:15:07.106301: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2024-07-15 10:15:07.624565: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
Num params: 281088004
Current device is cuda
Traceback (most recent call last):
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 158, in
execute_main_test()
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 154, in execute_main_test
train(args)
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 74, in train
trainer(unet, constants_dict, ema_helper, config)
File "D:\download2\aaa\Dynamic-noise-AD-master\train.py", line 31, in trainer
trainloader = torch.utils.data.DataLoader(
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\dataloader.py", line 350, in init
sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-type]
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\sampler.py", line 143, in init
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
ValueError: num_samples should be a positive integer value, but got num_samples=0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant