You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
4
checkpoint_dir: /mnt/d/download2/aaa/Dynamic-noise-AD-master/checkpoints/MVTec/
checkpoint_epochs: 300
checkpoint_name: weights
consistency_decoder: 0 # consistency decoder for better image quality at the cost of additional runtime
device: cuda
distance_metric_eval: combined
downscale_first: 1 # noiseless scaling
ema: true
ema_rate: 0.999
epochs: 9
eta: 0 # 0 corresponds to DDIM sampling and 1 to DDPM
eta2: 4 # DDAD conditioning
exp_name: default
fe_backbone: resnet34
head_channel: -1
knn_k: 20
latent: true
latent_backbone: VAE
latent_size: 32
learning_rate: 1e-4
multi_gpu: false
n_head: 8
noise: Gaussian
noise_sampling: 0 # noise image or not
num_workers: 30
optimizer: AdamW
save_model: true
schedule: linear
seed: 42
selected_features: # selected layer for KNN search
1
skip: 8 # steps to skip during inference
skip_DA: 8 # steps to skip during domain adaptation
test_trajectoy_steps: 80 # maximum noising level
test_trajectoy_steps_DA: 80 # maximum noising level for domain adaptation
trajectory_steps: 1000
unet_channel: 192
visual_all: true # additional visual output of heatmaps
weight_decay: 0.01
以上是我的config包
但都一直偵測不到
(AI) PS D:\download2\aaa\Dynamic-noise-AD-master> python main.py
2024-07-15 10:15:07.106301: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2024-07-15 10:15:07.624565: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
Num params: 281088004
Current device is cuda
Traceback (most recent call last):
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 158, in
execute_main_test()
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 154, in execute_main_test
train(args)
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 74, in train
trainer(unet, constants_dict, ema_helper, config)
File "D:\download2\aaa\Dynamic-noise-AD-master\train.py", line 31, in trainer
trainloader = torch.utils.data.DataLoader(
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\dataloader.py", line 350, in init
sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-type]
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\sampler.py", line 143, in init
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
ValueError: num_samples should be a positive integer value, but got num_samples=0
The text was updated successfully, but these errors were encountered:
data:
DA_batch_size: 30
batch_size: 30
category: grid
data_dir: /mnt/d/download2/aaa/Dynamic-noise-AD-master/MVTec/
image_size: 256
imput_channel: 4
manualseed: -1
mask: true
name: MVTec
metrics:
image_level_AUROC: true
image_level_F1Score: true
pixel_level_AUROC: true
pixel_level_F1Score: true
pro: true
threshold:
manual_image: null
manual_pixel: null
method: adaptive
model:
DA_epochs: 1 # nr. of fine tune epochs for fe
DA_fine_tune: 1
DA_learning_rate: 1e-4
DA_rnd_step: true # pick noising level for DA according to uniform distribution
dynamic_steps: true # Dynamic implicit conditioning
KNN_metric: l1
anomap_excluded_layers: # excluded feature layers for anomaly map creation
anomap_weighting: 0.85 # weight for latent anomaly map
attn_reso:
beta_end: 0.0195
beta_start: 0.0015
channel_mults:
checkpoint_dir: /mnt/d/download2/aaa/Dynamic-noise-AD-master/checkpoints/MVTec/
checkpoint_epochs: 300
checkpoint_name: weights
consistency_decoder: 0 # consistency decoder for better image quality at the cost of additional runtime
device: cuda
distance_metric_eval: combined
downscale_first: 1 # noiseless scaling
ema: true
ema_rate: 0.999
epochs: 9
eta: 0 # 0 corresponds to DDIM sampling and 1 to DDPM
eta2: 4 # DDAD conditioning
exp_name: default
fe_backbone: resnet34
head_channel: -1
knn_k: 20
latent: true
latent_backbone: VAE
latent_size: 32
learning_rate: 1e-4
multi_gpu: false
n_head: 8
noise: Gaussian
noise_sampling: 0 # noise image or not
num_workers: 30
optimizer: AdamW
save_model: true
schedule: linear
seed: 42
selected_features: # selected layer for KNN search
skip: 8 # steps to skip during inference
skip_DA: 8 # steps to skip during domain adaptation
test_trajectoy_steps: 80 # maximum noising level
test_trajectoy_steps_DA: 80 # maximum noising level for domain adaptation
trajectory_steps: 1000
unet_channel: 192
visual_all: true # additional visual output of heatmaps
weight_decay: 0.01
以上是我的config包
但都一直偵測不到
(AI) PS D:\download2\aaa\Dynamic-noise-AD-master> python main.py
2024-07-15 10:15:07.106301: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable
TF_ENABLE_ONEDNN_OPTS=0
.2024-07-15 10:15:07.624565: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable
TF_ENABLE_ONEDNN_OPTS=0
.Num params: 281088004
Current device is cuda
Traceback (most recent call last):
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 158, in
execute_main_test()
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 154, in execute_main_test
train(args)
File "D:\download2\aaa\Dynamic-noise-AD-master\main.py", line 74, in train
trainer(unet, constants_dict, ema_helper, config)
File "D:\download2\aaa\Dynamic-noise-AD-master\train.py", line 31, in trainer
trainloader = torch.utils.data.DataLoader(
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\dataloader.py", line 350, in init
sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-type]
File "C:\Users\user.conda\envs\AI\lib\site-packages\torch\utils\data\sampler.py", line 143, in init
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
ValueError: num_samples should be a positive integer value, but got num_samples=0
The text was updated successfully, but these errors were encountered: