-
Notifications
You must be signed in to change notification settings - Fork 0
/
dogleg.c
501 lines (404 loc) · 14.1 KB
/
dogleg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/* multilarge_nlinear/dogleg.c
*
* Copyright (C) 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_multilarge_nlinear.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
/*
* This module contains an implementation of the Powell dogleg
* algorithm for nonlinear optimization problems. This implementation
* closely follows the following works:
*
* [1] H. B. Nielsen, K. Madsen, Introduction to Optimization and
* Data Fitting, Informatics and Mathematical Modeling,
* Technical University of Denmark (DTU), 2010.
*
* [2] J. E. Dennis and H. H. W. Mei, Two new unconstrained optimization
* algorithms which use function and gradient values, J. Opt. Theory and
* Appl., 28(4), 1979.
*/
typedef struct
{
size_t n; /* number of observations */
size_t p; /* number of parameters */
gsl_vector *dx_gn; /* Gauss-Newton step, size p */
gsl_vector *dx_sd; /* steepest descent step, size p */
double norm_Dgn; /* || D dx_gn || */
double norm_Dsd; /* || D dx_sd || */
double norm_Dinvg; /* || D^{-1} g || */
double norm_JDinv2g; /* || J D^{-2} g || */
gsl_vector *workp1; /* workspace, length p */
gsl_vector *workp2; /* workspace, length p */
gsl_vector *workn; /* workspace, length n */
/* tunable parameters */
gsl_multilarge_nlinear_parameters params;
} dogleg_state_t;
#include "common.c"
static void * dogleg_alloc (const void * params, const size_t n, const size_t p);
static void dogleg_free(void *vstate);
static int dogleg_init(const void *vtrust_state, void *vstate);
static int dogleg_preloop(const void * vtrust_state, void * vstate);
static int dogleg_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate);
static int dogleg_double_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate);
static int dogleg_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate);
static int dogleg_calc_gn(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx);
static double dogleg_beta(const double t, const double delta,
const gsl_vector * diag, dogleg_state_t * state);
static void *
dogleg_alloc (const void * params, const size_t n, const size_t p)
{
dogleg_state_t *state;
state = calloc(1, sizeof(dogleg_state_t));
if (state == NULL)
{
GSL_ERROR_NULL ("failed to allocate dogleg state", GSL_ENOMEM);
}
state->dx_gn = gsl_vector_alloc(p);
if (state->dx_gn == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for dx_gn", GSL_ENOMEM);
}
state->dx_sd = gsl_vector_alloc(p);
if (state->dx_sd == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for dx_sd", GSL_ENOMEM);
}
state->workp1 = gsl_vector_alloc(p);
if (state->workp1 == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workp1", GSL_ENOMEM);
}
state->workp2 = gsl_vector_alloc(p);
if (state->workp2 == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workp2", GSL_ENOMEM);
}
state->workn = gsl_vector_alloc(n);
if (state->workn == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workn", GSL_ENOMEM);
}
state->n = n;
state->p = p;
state->params = *(const gsl_multilarge_nlinear_parameters *) params;
return state;
}
static void
dogleg_free(void *vstate)
{
dogleg_state_t *state = (dogleg_state_t *) vstate;
if (state->dx_gn)
gsl_vector_free(state->dx_gn);
if (state->dx_sd)
gsl_vector_free(state->dx_sd);
if (state->workp1)
gsl_vector_free(state->workp1);
if (state->workp2)
gsl_vector_free(state->workp2);
if (state->workn)
gsl_vector_free(state->workn);
free(state);
}
/*
dogleg_init()
Initialize dogleg solver
Inputs: vtrust_state - trust state
vstate - workspace
Return: success/error
*/
static int
dogleg_init(const void *vtrust_state, void *vstate)
{
(void)vtrust_state;
(void)vstate;
return GSL_SUCCESS;
}
/*
dogleg_preloop()
Initialize dogleg method prior to iteration loop.
This involves computing the steepest descent step. The
Gauss-Newton step is computed later in the _step() functions
if required.
Notes: on output,
1) state->dx_sd contains steepest descent step
2) state->norm_Dinvg contains || D^{-1} g ||
3) state->norm_JDinv2g contains || J D^{-2} g ||
*/
static int
dogleg_preloop(const void * vtrust_state, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
dogleg_state_t *state = (dogleg_state_t *) vstate;
double u;
double alpha; /* ||g||^2 / ||Jg||^2 */
/* calculate the steepest descent step */
/* compute workp1 = D^{-1} g and its norm */
gsl_vector_memcpy(state->workp1, trust_state->g);
gsl_vector_div(state->workp1, trust_state->diag);
state->norm_Dinvg = gsl_blas_dnrm2(state->workp1);
/* compute workp1 = D^{-2} g */
gsl_vector_div(state->workp1, trust_state->diag);
/* compute workp2 = J^T J D^{-2} g */
gsl_blas_dsymv(CblasLower, 1.0, trust_state->JTJ, state->workp1, 0.0, state->workp2);
/* compute norm_JDinv2g = || J D^{-2} g || */
gsl_blas_ddot(state->workp1, state->workp2, &u);
state->norm_JDinv2g = sqrt(u);
u = state->norm_Dinvg / state->norm_JDinv2g;
alpha = u * u;
/* dx_sd = -alpha D^{-2} g */
gsl_vector_memcpy(state->dx_sd, state->workp1);
gsl_vector_scale(state->dx_sd, -alpha);
state->norm_Dsd = scaled_enorm(trust_state->diag, state->dx_sd);
state->norm_Dgn = -1.0; /* computed later if needed */
return GSL_SUCCESS;
}
/*
dogleg_step()
Calculate a new step vector
*/
static int
dogleg_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
dogleg_state_t *state = (dogleg_state_t *) vstate;
if (state->norm_Dsd >= delta)
{
/* steepest descent step is outside trust region;
* truncate steepest descent step to trust region boundary */
gsl_vector_memcpy(dx, state->dx_sd);
gsl_vector_scale(dx, delta / state->norm_Dsd);
}
else
{
/* compute Gauss-Newton step if needed */
if (state->norm_Dgn < 0.0)
{
int status = dogleg_calc_gn(trust_state, state->dx_gn);
if (status)
return status;
/* compute || D dx_gn || */
state->norm_Dgn = scaled_enorm(trust_state->diag, state->dx_gn);
}
if (state->norm_Dgn <= delta)
{
/* Gauss-Newton step is inside trust region, use it as final step
* since it is the global minimizer of the quadratic model function */
gsl_vector_memcpy(dx, state->dx_gn);
}
else
{
/* Gauss-Newton step is outside trust region, but steepest
* descent is inside; use dogleg step */
double beta = dogleg_beta(1.0, delta, trust_state->diag, state);
/* compute: workp1 = dx_gn - dx_sd */
scaled_addition(1.0, state->dx_gn, -1.0, state->dx_sd, state->workp1);
/* dx = dx_sd + beta*(dx_gn - dx_sd) */
scaled_addition(beta, state->workp1, 1.0, state->dx_sd, dx);
}
}
return GSL_SUCCESS;
}
/*
dogleg_double_step()
Calculate a new step with double dogleg method. Based on
section 3 of [2]
*/
static int
dogleg_double_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate)
{
const double alpha_fac = 0.8; /* recommended value from Dennis and Mei */
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
dogleg_state_t *state = (dogleg_state_t *) vstate;
if (state->norm_Dsd >= delta)
{
/* steepest descent step is outside trust region;
* truncate steepest descent step to trust region boundary */
gsl_vector_memcpy(dx, state->dx_sd);
gsl_vector_scale(dx, delta / state->norm_Dsd);
}
else
{
/* compute Gauss-Newton step if needed */
if (state->norm_Dgn < 0.0)
{
int status = dogleg_calc_gn(trust_state, state->dx_gn);
if (status)
return status;
/* compute || D dx_gn || */
state->norm_Dgn = scaled_enorm(trust_state->diag, state->dx_gn);
}
if (state->norm_Dgn <= delta)
{
/* Gauss-Newton step is inside trust region, use it as final step
* since it is the global minimizer of the quadratic model function */
gsl_vector_memcpy(dx, state->dx_gn);
}
else
{
double t, u, v, c;
/* compute: u = ||D^{-1} g||^2 / ||J D^{-2} g||^2 */
v = state->norm_Dinvg / state->norm_JDinv2g;
u = v * v;
/* compute: v = g^T dx_gn */
gsl_blas_ddot(trust_state->g, state->dx_gn, &v);
/* compute: c = ||D^{-1} g||^4 / (||J D^{-2} g||^2 * |g^T dx_gn|) */
c = u * (state->norm_Dinvg / fabs(v)) * state->norm_Dinvg;
/* compute: t = 1 - alpha_fac*(1-c) */
t = 1.0 - alpha_fac*(1.0 - c);
if (t * state->norm_Dgn <= delta)
{
/* set dx = (delta / ||D dx_gn||) dx_gn */
gsl_vector_memcpy(dx, state->dx_gn);
gsl_vector_scale(dx, delta / state->norm_Dgn);
}
else
{
/* Cauchy point is inside, Gauss-Newton is outside trust region;
* use double dogleg step */
double beta = dogleg_beta(t, delta, trust_state->diag, state);
/* compute: workp1 = t*dx_gn - dx_sd */
scaled_addition(t, state->dx_gn, -1.0, state->dx_sd, state->workp1);
/* dx = dx_sd + beta*(t*dx_gn - dx_sd) */
scaled_addition(beta, state->workp1, 1.0, state->dx_sd, dx);
}
}
}
return GSL_SUCCESS;
}
static int
dogleg_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
dogleg_state_t *state = (dogleg_state_t *) vstate;
*pred = quadratic_preduction(trust_state, dx, state->workn);
return GSL_SUCCESS;
}
/*
dogleg_calc_gn()
Calculate Gauss-Newton step by solving
J^T J dx_gn = -J^T f
Inputs: trust_state - trust state variables
dx - (output) Gauss-Newton step vector
Return: success/error
*/
static int
dogleg_calc_gn(const gsl_multilarge_nlinear_trust_state * trust_state, gsl_vector * dx)
{
int status;
const gsl_multilarge_nlinear_parameters *params = trust_state->params;
/* initialize linear least squares solver */
status = (params->solver->init)(trust_state, trust_state->solver_state);
if (status)
return status;
/* prepare the linear solver to compute Gauss-Newton step */
status = (params->solver->presolve)(0.0, trust_state, trust_state->solver_state);
if (status)
return status;
/* solve: J dx_gn = -f for Gauss-Newton step */
status = (params->solver->solve)(trust_state->g,
dx,
trust_state,
trust_state->solver_state);
if (status)
return status;
return GSL_SUCCESS;
}
/*
dogleg_beta()
This function finds beta in [0,1] such that the step
dx = dx_sd + beta*(t*dx_gn - dx_sd)
has norm
||D dx|| = delta
beta is the positive root of the quadratic:
a beta^2 + b beta + c = 0
with
a = ||D(t*dx_gn - dx_sd)||^2
b = 2 dx_sd^T D^T D (t*dx_gn - dx_sd)
c = ||D dx_sd||^2 - delta^2
Inputs: t - amount of Gauss-Newton step to use for dogleg
(= 1 for classical dogleg, <= 1 for double dogleg)
delta - trust region radius
diag - diag(D) scaling matrix
state - workspace
*/
static double
dogleg_beta(const double t, const double delta,
const gsl_vector * diag, dogleg_state_t * state)
{
double beta;
double a, b, c;
/* compute: workp1 = t*dx_gn - dx_sd */
scaled_addition(t, state->dx_gn, -1.0, state->dx_sd, state->workp1);
/* a = || D (t*dx_gn - dx_sd) ||^2 */
a = scaled_enorm(diag, state->workp1);
a *= a;
/* workp1 = D^T D (t*dx_gn - dx_sd) */
gsl_vector_mul(state->workp1, diag);
gsl_vector_mul(state->workp1, diag);
/* b = 2 dx_sd^T D^T D (t*dx_gn - dx-sd) */
gsl_blas_ddot(state->dx_sd, state->workp1, &b);
b *= 2.0;
/* c = || D dx_sd ||^2 - delta^2 = (||D dx_sd|| + delta) (||D dx_sd|| - delta) */
c = (state->norm_Dsd + delta) * (state->norm_Dsd - delta);
if (b > 0.0)
{
beta = (-2.0 * c) / (b + sqrt(b*b - 4.0*a*c));
}
else
{
beta = (-b + sqrt(b*b - 4.0*a*c)) / (2.0 * a);
}
return beta;
}
static const gsl_multilarge_nlinear_trs dogleg_type =
{
"dogleg",
dogleg_alloc,
dogleg_init,
dogleg_preloop,
dogleg_step,
dogleg_preduction,
dogleg_free
};
const gsl_multilarge_nlinear_trs *gsl_multilarge_nlinear_trs_dogleg = &dogleg_type;
static const gsl_multilarge_nlinear_trs ddogleg_type =
{
"double-dogleg",
dogleg_alloc,
dogleg_init,
dogleg_preloop,
dogleg_double_step,
dogleg_preduction,
dogleg_free
};
const gsl_multilarge_nlinear_trs *gsl_multilarge_nlinear_trs_ddogleg = &ddogleg_type;