-
Notifications
You must be signed in to change notification settings - Fork 0
/
lm.c
364 lines (298 loc) · 10.2 KB
/
lm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/* multilarge_nlinear/lm.c
*
* Copyright (C) 2014, 2015, 2016 Patrick Alken
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <config.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_multilarge_nlinear.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_permutation.h>
/*
* This module contains an implementation of the Levenberg-Marquardt
* algorithm for nonlinear optimization problems. This implementation
* closely follows the following works:
*
* [1] H. B. Nielsen, K. Madsen, Introduction to Optimization and
* Data Fitting, Informatics and Mathematical Modeling,
* Technical University of Denmark (DTU), 2010.
*
* [2] J. J. More, The Levenberg-Marquardt Algorithm: Implementation
* and Theory, Lecture Notes in Mathematics, v630, 1978.
*/
typedef struct
{
size_t n; /* number of observations */
size_t p; /* number of parameters */
gsl_vector *fvv; /* D_v^2 f(x), size n */
gsl_vector *vel; /* geodesic velocity (standard LM step), size p */
gsl_vector *acc; /* geodesic acceleration, size p */
gsl_vector *JTfvv; /* J^T fvv, size p */
gsl_vector *workp; /* workspace, length p */
gsl_vector *workn; /* workspace, length n */
int accel; /* use geodesic acceleration? */
/* tunable parameters */
gsl_multilarge_nlinear_parameters params;
} lm_state_t;
#include "common.c"
static void *lm_alloc (const int accel, const void * params, const size_t n, const size_t p);
static void *lm_alloc_noaccel (const void * params, const size_t n, const size_t p);
static void *lm_alloc_accel (const void * params, const size_t n, const size_t p);
static void lm_free(void *vstate);
static int lm_init(const void *vtrust_state, void *vstate);
static int lm_preloop(const void * vtrust_state, void * vstate);
static int lm_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate);
static int lm_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate);
static void *
lm_alloc (const int accel, const void * params, const size_t n, const size_t p)
{
const gsl_multilarge_nlinear_parameters *mparams = (const gsl_multilarge_nlinear_parameters *) params;
lm_state_t *state;
state = calloc(1, sizeof(lm_state_t));
if (state == NULL)
{
GSL_ERROR_NULL ("failed to allocate lm state", GSL_ENOMEM);
}
state->workp = gsl_vector_alloc(p);
if (state->workp == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workp", GSL_ENOMEM);
}
state->workn = gsl_vector_alloc(n);
if (state->workn == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for workn", GSL_ENOMEM);
}
state->fvv = gsl_vector_alloc(n);
if (state->fvv == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for fvv", GSL_ENOMEM);
}
state->vel = gsl_vector_alloc(p);
if (state->vel == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for vel", GSL_ENOMEM);
}
state->acc = gsl_vector_alloc(p);
if (state->acc == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for acc", GSL_ENOMEM);
}
state->JTfvv = gsl_vector_alloc(p);
if (state->JTfvv == NULL)
{
GSL_ERROR_NULL ("failed to allocate space for JTfvv", GSL_ENOMEM);
}
state->n = n;
state->p = p;
state->params = *mparams;
state->accel = accel;
return state;
}
static void *
lm_alloc_noaccel (const void * params, const size_t n, const size_t p)
{
return lm_alloc(0, params, n, p);
}
static void *
lm_alloc_accel (const void * params, const size_t n, const size_t p)
{
return lm_alloc(1, params, n, p);
}
static void
lm_free(void *vstate)
{
lm_state_t *state = (lm_state_t *) vstate;
if (state->workp)
gsl_vector_free(state->workp);
if (state->workn)
gsl_vector_free(state->workn);
if (state->fvv)
gsl_vector_free(state->fvv);
if (state->vel)
gsl_vector_free(state->vel);
if (state->acc)
gsl_vector_free(state->acc);
if (state->JTfvv)
gsl_vector_free(state->JTfvv);
free(state);
}
/*
lm_init()
Initialize LM solver
Inputs: vtrust_state - trust state
vstate - workspace
Return: success/error
*/
static int
lm_init(const void *vtrust_state, void *vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
lm_state_t *state = (lm_state_t *) vstate;
gsl_vector_set_zero(state->vel);
gsl_vector_set_zero(state->acc);
*(trust_state->avratio) = 0.0;
return GSL_SUCCESS;
}
/*
lm_preloop()
Initialize LM method for new Jacobian matrix
*/
static int
lm_preloop(const void * vtrust_state, void * vstate)
{
int status;
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
const gsl_multilarge_nlinear_parameters *params = trust_state->params;
(void)vstate;
/* initialize linear least squares solver */
status = (params->solver->init)(trust_state, trust_state->solver_state);
if (status)
return status;
return GSL_SUCCESS;
}
/*
lm_step()
Calculate a new step vector by solving the linear
least squares system:
[ J ] v = - [ f ]
[ sqrt(mu) D ] [ 0 ]
*/
static int
lm_step(const void * vtrust_state, const double delta,
gsl_vector * dx, void * vstate)
{
int status;
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
lm_state_t *state = (lm_state_t *) vstate;
const gsl_multilarge_nlinear_parameters *params = trust_state->params;
const double mu = *(trust_state->mu);
(void)delta;
/* prepare the linear solver with current LM parameter mu */
status = (params->solver->presolve)(mu, trust_state, trust_state->solver_state);
if (status)
return status;
/* solve: (J^T J + mu D^T D) v = - J^T f */
status = (params->solver->solve)(trust_state->g,
state->vel,
trust_state,
trust_state->solver_state);
if (status)
return status;
if (state->accel)
{
double anorm, vnorm;
/* compute geodesic acceleration */
status = gsl_multilarge_nlinear_eval_fvv(params->h_fvv,
trust_state->x,
state->vel,
trust_state->f,
trust_state->sqrt_wts,
trust_state->fdf,
state->fvv,
state->workp);
if (status)
return status;
/* compute J^T fvv */
status = gsl_multilarge_nlinear_eval_df(CblasTrans,
trust_state->x,
trust_state->f,
state->fvv,
trust_state->sqrt_wts,
params->h_df,
params->fdtype,
trust_state->fdf,
state->JTfvv,
NULL,
state->workn);
if (status)
return status;
/* solve: (J^T J + mu D^T D) a = - J^T fvv */
status = (params->solver->solve)(state->JTfvv,
state->acc,
trust_state,
trust_state->solver_state);
if (status)
return status;
anorm = gsl_blas_dnrm2(state->acc);
vnorm = gsl_blas_dnrm2(state->vel);
/* store |a| / |v| */
*(trust_state->avratio) = anorm / vnorm;
}
/* compute step dx = v + 1/2 a */
scaled_addition(1.0, state->vel, 0.5, state->acc, dx);
return GSL_SUCCESS;
}
/*
lm_preduction()
Compute predicted reduction using Eq 4.4 of More 1978
*/
static int
lm_preduction(const void * vtrust_state, const gsl_vector * dx,
double * pred, void * vstate)
{
const gsl_multilarge_nlinear_trust_state *trust_state =
(const gsl_multilarge_nlinear_trust_state *) vtrust_state;
lm_state_t *state = (lm_state_t *) vstate;
const gsl_vector *diag = trust_state->diag;
const gsl_vector *p = state->vel;
const double norm_Dp = scaled_enorm(diag, p);
const double normf = gsl_blas_dnrm2(trust_state->f);
const double mu = *(trust_state->mu);
double u, v;
(void)dx;
/* compute workp = J^T J p */
gsl_blas_dsymv(CblasLower, 1.0, trust_state->JTJ, p, 0.0, state->workp);
/* compute u = p^T J^T J p = ||J p||^2 */
gsl_blas_ddot(state->workp, p, &u);
/* compute u = ||J p||^2 / ||f||^2 */
u /= normf * normf;
/* v = ||D p|| / ||f|| */
v = norm_Dp / normf;
*pred = u + 2.0 * mu * v * v;
return GSL_SUCCESS;
}
static const gsl_multilarge_nlinear_trs lm_type =
{
"levenberg-marquardt",
lm_alloc_noaccel,
lm_init,
lm_preloop,
lm_step,
lm_preduction,
lm_free
};
const gsl_multilarge_nlinear_trs *gsl_multilarge_nlinear_trs_lm = &lm_type;
static const gsl_multilarge_nlinear_trs lmaccel_type =
{
"levenberg-marquardt+accel",
lm_alloc_accel,
lm_init,
lm_preloop,
lm_step,
lm_preduction,
lm_free
};
const gsl_multilarge_nlinear_trs *gsl_multilarge_nlinear_trs_lmaccel = &lmaccel_type;