-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocationFeatures.py
165 lines (143 loc) · 5.36 KB
/
locationFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import geopy.distance
import math
from geographiclib.geodesic import Geodesic
nyc_boroughs={
'manhattan':{
'min_lng':-74.0479,
'min_lat':40.6829,
'max_lng':-73.9067,
'max_lat':40.8820
},
'queens':{
'min_lng':-73.9630,
'min_lat':40.5431,
'max_lng':-73.7004,
'max_lat':40.8007
},
'brooklyn':{
'min_lng':-74.0421,
'min_lat':40.5707,
'max_lng':-73.8334,
'max_lat':40.7395
},
'bronx':{
'min_lng':-73.9339,
'min_lat':40.7855,
'max_lng':-73.7654,
'max_lat':40.9176
},
'staten_island':{
'min_lng':-74.2558,
'min_lat':40.4960,
'max_lng':-74.0522,
'max_lat':40.6490
}
}
airports = {
'jfk': {
'min_lng':-73.8336,
'min_lat':40.6087,
'max_lng':-73.7313,
'max_lat':40.6754
},
'newark': {
'min_lng':-74.2278,
'min_lat':40.6530,
'max_lng':-74.1254,
'max_lat':40.7197
}
}
def calculateDistance(lon1, lat1, lon2, lat2):
coords1 = (lat1, lon1)
coords2 = (lat2, lon2)
#The Vincenty distance apparently is more accurate than the Haversine formula
vDistance = round(geopy.distance.vincenty(coords1, coords2).km, 3)
#Euclidian distance
eDistance = round(math.sqrt( ((coords1[0]-coords2[0])**2)+((coords1[1]-coords2[1])**2) ),3)
return vDistance, eDistance
def calculateBearing(lon1, lat1, lon2, lat2):
result = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2)
nBearing = round(result['azi1'] / 360.0, 3)
return nBearing
def isAirport(lon1, lat1, lon2, lat2):
jfk = airports['jfk']
newark = airports['newark']
if (lon1 <= jfk['max_lng'] and lon1 >= jfk['min_lng'] and
lat1 >= jfk['min_lat'] and lat1 <= jfk['max_lat']):
return 1
elif (lon2 <= jfk['max_lng'] and lon2 >= jfk['min_lng'] and
lat2 >= jfk['min_lat'] and lat2 <= jfk['max_lat']):
return 1
elif (lon1 <= newark['max_lng'] and lon1 >= newark['min_lng'] and
lat1 >= newark['min_lat'] and lat1 <= newark['max_lat']):
return 1
elif (lon2 <= newark['max_lng'] and lon2 >= newark['min_lng'] and
lat2 >= newark['min_lat'] and lat2 <= newark['max_lat']):
return 1
else:
return 0
def isManhattan(lon1, lat1, lon2, lat2):
pickup = 0
dropoff = 0
mahattan = nyc_boroughs['manhattan']
if (lon1 <= mahattan['max_lng'] and lon1 >= mahattan['min_lng'] and
lat1 >= mahattan['min_lat'] and lat1 <= mahattan['max_lat']):
pickup = 1
if (lon2 <= mahattan['max_lng'] and lon2 >= mahattan['max_lng'] and
lat2 >= mahattan['min_lat'] and lat2 <= mahattan['max_lat']):
dropoff = 1
return (pickup, dropoff)
def isQueens(lon1, lat1, lon2, lat2):
pickup = 0
dropoff = 0
queens = nyc_boroughs['queens']
if (lon1 <= queens['max_lng'] and lon1 >= queens['min_lng'] and
lat1 >= queens['min_lat'] and lat1 <= queens['max_lat']):
pickup = 1
if (lon2 <= queens['max_lng'] and lon2 >= queens['max_lng'] and
lat2 >= queens['min_lat'] and lat2 <= queens['max_lat']):
dropoff = 1
return (pickup, dropoff)
def isBronx(lon1, lat1, lon2, lat2):
pickup = 0
dropoff = 0
bronx = nyc_boroughs['bronx']
if (lon1 <= bronx['max_lng'] and lon1 >= bronx['min_lng'] and
lat1 >= bronx['min_lat'] and lat1 <= bronx['max_lat']):
pickup = 1
if (lon2 <= bronx['max_lng'] and lon2 >= bronx['max_lng'] and
lat2 >= bronx['min_lat'] and lat2 <= bronx['max_lat']):
dropoff = 1
return (pickup, dropoff)
def isBrooklyn(lon1, lat1, lon2, lat2):
pickup = 0
dropoff = 0
brooklyn = nyc_boroughs['brooklyn']
if (lon1 <= brooklyn['max_lng'] and lon1 >= brooklyn['min_lng'] and
lat1 >= brooklyn['min_lat'] and lat1 <= brooklyn['max_lat']):
pickup = 1
if (lon2 <= brooklyn['max_lng'] and lon2 >= brooklyn['max_lng'] and
lat2 >= brooklyn['min_lat'] and lat2 <= brooklyn['max_lat']):
dropoff = 1
return (pickup, dropoff)
def isStaten(lon1, lat1, lon2, lat2):
pickup = 0
dropoff = 0
staten_island = nyc_boroughs['staten_island']
if (lon1 <= staten_island['max_lng'] and lon1 >= staten_island['min_lng'] and
lat1 >= staten_island['min_lat'] and lat1 <= staten_island['max_lat']):
pickup = 1
if (lon2 <= staten_island['max_lng'] and lon2 >= staten_island['max_lng'] and
lat2 >= staten_island['min_lat'] and lat2 <= staten_island['max_lat']):
dropoff = 1
return (pickup, dropoff)
def processLocation(lat1, lon1, lat2, lon2):
vDistance, eDistance = calculateDistance(lon1, lat1, lon2, lat2)
nBearing = calculateBearing(lon1, lat1, lon2, lat2)
airport = isAirport(lon1, lat1, lon2, lat2)
isManhattanPickup, isManhattanDropOff = isManhattan(lon1, lat1, lon2, lat2)
isQueensPickup, isQueensDropOff = isQueens(lon1, lat1, lon2, lat2)
isBronxPickup, isBronxDropOff = isBronx(lon1, lat1, lon2, lat2)
isStatenPickup, isStatenDropOff = isStaten(lon1, lat1, lon2, lat2)
isBrooklynPickup, isBrooklynDropOff = isBrooklyn(lon1, lat1, lon2, lat2)
return nBearing, vDistance, eDistance, airport, isManhattanPickup, isManhattanDropOff, isQueensPickup, isQueensDropOff, isBronxPickup, isBronxDropOff, isStatenPickup, isStatenDropOff, isBrooklynPickup, isBrooklynDropOff