-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNumber Theory
82 lines (72 loc) · 1.78 KB
/
Number Theory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/// Euler totient phi . Given n . Calculates number of coprimes <=n .
void Totient_Phi()
{
for(int i=1;i<N;++i)
{
phi[i]=i ;
}
for(int i=2;i<N;++i)
{
if(chk[i]==0) /// prime
{
for(int j=i;j<N;j+=i)
{
phi[j]=(a[j]/i)*(i-1) ;
chk[j]=1 ;
}
}
}
}
//// gives number of coprime from ( 1 to r ) w.r.t n
int inclusion_exlcusion (int n, int r) {
vector<int> p;
for (int i=2; i*i<=n; ++i)
if (n % i == 0) {
p.push_back (i);
while (n % i == 0)
n /= i;
}
if (n > 1)
p.push_back (n);
int sum = 0;
for (int msk=1; msk<(1<<p.size()); ++msk) {
int mult = 1,
bits = 0;
for (int i=0; i<(int)p.size(); ++i)
if (msk & (1<<i)) {
++bits;
mult *= p[i];
}
int cur = r / mult;
if (bits % 2 == 1)
sum += cur;
else
sum -= cur;
}
return r - sum;
}
/// mobius function ... fun fact till now i was doing it by iterating over all divisors in nlogn but mobius can do it in every query O(n) .
/// given a grid of size n*m .. count number of pairs such that they have a unique gcd ... ( solve lightoj ray gun ) ,,
fill(pr,pr+N,1) ; fill(mob,mob+N,1) ;
for(int i=2;i<N;i++)
{
if(pr[i])
{
for(int j=i*i;j<N;j+=i*i)
{
mob[j]=0 ;
}
for(int j=i;j<N;j+=i)
{
mob[j]*=-1 ;
if(j>i)
pr[j]= 0 ;
}
}
}
for(int g=1;g<=n;++g)
{
ans+=mob[g]*(n/g)*(m/g) ;
//cout<<" g "<<g<<" mob "<<mob[g]<<endl ;
}
///