-
Notifications
You must be signed in to change notification settings - Fork 83
/
process_bindingmoad.py
652 lines (530 loc) · 24.7 KB
/
process_bindingmoad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
from pathlib import Path
from time import time
import random
from collections import defaultdict
import argparse
import warnings
from tqdm import tqdm
import numpy as np
import torch
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one, is_aa
from Bio.PDB import PDBIO, Select
from openbabel import openbabel
from rdkit import Chem
from rdkit.Chem import QED
from scipy.ndimage import gaussian_filter
from geometry_utils import get_bb_transform
from analysis.molecule_builder import build_molecule
from analysis.metrics import rdmol_to_smiles
import constants
from constants import covalent_radii, dataset_params
import utils
dataset_info = dataset_params['bindingmoad']
amino_acid_dict = dataset_info['aa_encoder']
atom_dict = dataset_info['atom_encoder']
atom_decoder = dataset_info['atom_decoder']
class Model0(Select):
def accept_model(self, model):
return model.id == 0
def read_label_file(csv_path):
"""
Read BindingMOAD's label file
Args:
csv_path: path to 'every.csv'
Returns:
Nested dictionary with all ligands. First level: EC number,
Second level: PDB ID, Third level: list of ligands. Each ligand is
represented as a tuple (ligand name, validity, SMILES string)
"""
ligand_dict = {}
with open(csv_path, 'r') as f:
for line in f.readlines():
row = line.split(',')
# new protein class
if len(row[0]) > 0:
curr_class = row[0]
ligand_dict[curr_class] = {}
continue
# new protein
if len(row[2]) > 0:
curr_prot = row[2]
ligand_dict[curr_class][curr_prot] = []
continue
# new small molecule
if len(row[3]) > 0:
ligand_dict[curr_class][curr_prot].append(
# (ligand name, validity, SMILES string)
[row[3], row[4], row[9]]
)
return ligand_dict
def compute_druglikeness(ligand_dict):
"""
Computes RDKit's QED value and adds it to the dictionary
Args:
ligand_dict: nested ligand dictionary
Returns:
the same ligand dictionary with additional QED values
"""
print("Computing QED values...")
for p, m in tqdm([(p, m) for c in ligand_dict for p in ligand_dict[c]
for m in ligand_dict[c][p]]):
mol = Chem.MolFromSmiles(m[2])
if mol is None:
mol_id = f'{p}_{m}'
warnings.warn(f"Could not construct molecule {mol_id} from SMILES "
f"string '{m[2]}'")
continue
m.append(QED.qed(mol))
return ligand_dict
def filter_and_flatten(ligand_dict, qed_thresh, max_occurences, seed):
filtered_examples = []
all_examples = [(c, p, m) for c in ligand_dict for p in ligand_dict[c]
for m in ligand_dict[c][p]]
# shuffle to select random examples of ligands that occur more than
# max_occurences times
random.seed(seed)
random.shuffle(all_examples)
ligand_name_counter = defaultdict(int)
print("Filtering examples...")
for c, p, m in tqdm(all_examples):
ligand_name, ligand_chain, ligand_resi = m[0].split(':')
if m[1] == 'valid' and len(m) > 3 and m[3] > qed_thresh:
if ligand_name_counter[ligand_name] < max_occurences:
filtered_examples.append(
(c, p, m)
)
ligand_name_counter[ligand_name] += 1
return filtered_examples
def split_by_ec_number(data_list, n_val, n_test, ec_level=1):
"""
Split dataset into training, validation and test sets based on EC numbers
https://en.wikipedia.org/wiki/Enzyme_Commission_number
Args:
data_list: list of ligands
n_val: number of validation examples
n_test: number of test examples
ec_level: level in the EC numbering hierarchy at which the split is
made, i.e. items with matching EC numbers at this level are put in
the same set
Returns:
dictionary with keys 'train', 'val', and 'test'
"""
examples_per_class = defaultdict(int)
for c, p, m in data_list:
c_sub = '.'.join(c.split('.')[:ec_level])
examples_per_class[c_sub] += 1
assert sum(examples_per_class.values()) == len(data_list)
# split ec numbers
val_classes = set()
for c, num in sorted(examples_per_class.items(), key=lambda x: x[1],
reverse=True):
if sum([examples_per_class[x] for x in val_classes]) + num <= n_val:
val_classes.add(c)
test_classes = set()
for c, num in sorted(examples_per_class.items(), key=lambda x: x[1],
reverse=True):
# skip classes already used in the validation set
if c in val_classes:
continue
if sum([examples_per_class[x] for x in test_classes]) + num <= n_test:
test_classes.add(c)
# remaining classes belong to test set
train_classes = {x for x in examples_per_class if
x not in val_classes and x not in test_classes}
# create separate lists of examples
data_split = {}
data_split['train'] = [x for x in data_list if '.'.join(
x[0].split('.')[:ec_level]) in train_classes]
data_split['val'] = [x for x in data_list if '.'.join(
x[0].split('.')[:ec_level]) in val_classes]
data_split['test'] = [x for x in data_list if '.'.join(
x[0].split('.')[:ec_level]) in test_classes]
assert len(data_split['train']) + len(data_split['val']) + \
len(data_split['test']) == len(data_list)
return data_split
def ligand_list_to_dict(ligand_list):
out_dict = defaultdict(list)
for _, p, m in ligand_list:
out_dict[p].append(m)
return out_dict
def process_ligand_and_pocket(pdb_struct, ligand_name, ligand_chain,
ligand_resi, dist_cutoff, ca_only,
compute_quaternion=False):
try:
residues = {obj.id[1]: obj for obj in
pdb_struct[0][ligand_chain].get_residues()}
except KeyError as e:
raise KeyError(f'Chain {e} not found ({pdbfile}, '
f'{ligand_name}:{ligand_chain}:{ligand_resi})')
ligand = residues[ligand_resi]
assert ligand.get_resname() == ligand_name, \
f"{ligand.get_resname()} != {ligand_name}"
# remove H atoms if not in atom_dict, other atom types that aren't allowed
# should stay so that the entire ligand can be removed from the dataset
lig_atoms = [a for a in ligand.get_atoms()
if (a.element.capitalize() in atom_dict or a.element != 'H')]
lig_coords = np.array([a.get_coord() for a in lig_atoms])
try:
lig_one_hot = np.stack([
np.eye(1, len(atom_dict), atom_dict[a.element.capitalize()]).squeeze()
for a in lig_atoms
])
except KeyError as e:
raise KeyError(
f'Ligand atom {e} not in atom dict ({pdbfile}, '
f'{ligand_name}:{ligand_chain}:{ligand_resi})')
# Find interacting pocket residues based on distance cutoff
pocket_residues = []
for residue in pdb_struct[0].get_residues():
res_coords = np.array([a.get_coord() for a in residue.get_atoms()])
if is_aa(residue.get_resname(), standard=True) and \
(((res_coords[:, None, :] - lig_coords[None, :, :]) ** 2).sum(-1) ** 0.5).min() < dist_cutoff:
pocket_residues.append(residue)
# Compute transform of the canonical reference frame
n_xyz = np.array([res['N'].get_coord() for res in pocket_residues])
ca_xyz = np.array([res['CA'].get_coord() for res in pocket_residues])
c_xyz = np.array([res['C'].get_coord() for res in pocket_residues])
if compute_quaternion:
quaternion, c_alpha = get_bb_transform(n_xyz, ca_xyz, c_xyz)
if np.any(np.isnan(quaternion)):
raise ValueError(
f'Invalid value in quaternion ({pdbfile}, '
f'{ligand_name}:{ligand_chain}:{ligand_resi})')
else:
c_alpha = ca_xyz
if ca_only:
pocket_coords = c_alpha
try:
pocket_one_hot = np.stack([
np.eye(1, len(amino_acid_dict),
amino_acid_dict[three_to_one(res.get_resname())]).squeeze()
for res in pocket_residues])
except KeyError as e:
raise KeyError(
f'{e} not in amino acid dict ({pdbfile}, '
f'{ligand_name}:{ligand_chain}:{ligand_resi})')
else:
pocket_atoms = [a for res in pocket_residues for a in res.get_atoms()
if (a.element.capitalize() in atom_dict or a.element != 'H')]
pocket_coords = np.array([a.get_coord() for a in pocket_atoms])
try:
pocket_one_hot = np.stack([
np.eye(1, len(atom_dict), atom_dict[a.element.capitalize()]).squeeze()
for a in pocket_atoms
])
except KeyError as e:
raise KeyError(
f'Pocket atom {e} not in atom dict ({pdbfile}, '
f'{ligand_name}:{ligand_chain}:{ligand_resi})')
pocket_ids = [f'{res.parent.id}:{res.id[1]}' for res in pocket_residues]
ligand_data = {
'lig_coords': lig_coords,
'lig_one_hot': lig_one_hot,
}
pocket_data = {
'pocket_coords': pocket_coords,
'pocket_one_hot': pocket_one_hot,
'pocket_ids': pocket_ids,
}
if compute_quaternion:
pocket_data['pocket_quaternion'] = quaternion
return ligand_data, pocket_data
def compute_smiles(positions, one_hot, mask):
print("Computing SMILES ...")
atom_types = np.argmax(one_hot, axis=-1)
sections = np.where(np.diff(mask))[0] + 1
positions = [torch.from_numpy(x) for x in np.split(positions, sections)]
atom_types = [torch.from_numpy(x) for x in np.split(atom_types, sections)]
mols_smiles = []
pbar = tqdm(enumerate(zip(positions, atom_types)),
total=len(np.unique(mask)))
for i, (pos, atom_type) in pbar:
mol = build_molecule(pos, atom_type, dataset_info)
# BasicMolecularMetrics() computes SMILES after sanitization
try:
Chem.SanitizeMol(mol)
except ValueError:
continue
mol = rdmol_to_smiles(mol)
if mol is not None:
mols_smiles.append(mol)
pbar.set_description(f'{len(mols_smiles)}/{i + 1} successful')
return mols_smiles
def get_n_nodes(lig_mask, pocket_mask, smooth_sigma=None):
# Joint distribution of ligand's and pocket's number of nodes
idx_lig, n_nodes_lig = np.unique(lig_mask, return_counts=True)
idx_pocket, n_nodes_pocket = np.unique(pocket_mask, return_counts=True)
assert np.all(idx_lig == idx_pocket)
joint_histogram = np.zeros((np.max(n_nodes_lig) + 1,
np.max(n_nodes_pocket) + 1))
for nlig, npocket in zip(n_nodes_lig, n_nodes_pocket):
joint_histogram[nlig, npocket] += 1
print(f'Original histogram: {np.count_nonzero(joint_histogram)}/'
f'{joint_histogram.shape[0] * joint_histogram.shape[1]} bins filled')
# Smooth the histogram
if smooth_sigma is not None:
filtered_histogram = gaussian_filter(
joint_histogram, sigma=smooth_sigma, order=0, mode='constant',
cval=0.0, truncate=4.0)
print(f'Smoothed histogram: {np.count_nonzero(filtered_histogram)}/'
f'{filtered_histogram.shape[0] * filtered_histogram.shape[1]} bins filled')
joint_histogram = filtered_histogram
return joint_histogram
def get_bond_length_arrays(atom_mapping):
bond_arrays = []
for i in range(3):
bond_dict = getattr(constants, f'bonds{i + 1}')
bond_array = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
if a1 in bond_dict and a2 in bond_dict[a1]:
bond_len = bond_dict[a1][a2]
else:
bond_len = 0
bond_array[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(bond_array == bond_array.T)
bond_arrays.append(bond_array)
return bond_arrays
def get_lennard_jones_rm(atom_mapping):
# Bond radii for the Lennard-Jones potential
LJ_rm = np.zeros((len(atom_mapping), len(atom_mapping)))
for a1 in atom_mapping.keys():
for a2 in atom_mapping.keys():
all_bond_lengths = []
for btype in ['bonds1', 'bonds2', 'bonds3']:
bond_dict = getattr(constants, btype)
if a1 in bond_dict and a2 in bond_dict[a1]:
all_bond_lengths.append(bond_dict[a1][a2])
if len(all_bond_lengths) > 0:
# take the shortest possible bond length because slightly larger
# values aren't penalized as much
bond_len = min(all_bond_lengths)
else:
# Replace missing values with sum of average covalent radii
bond_len = covalent_radii[a1] + covalent_radii[a2]
LJ_rm[atom_mapping[a1], atom_mapping[a2]] = bond_len
assert np.all(LJ_rm == LJ_rm.T)
return LJ_rm
def get_type_histograms(lig_one_hot, pocket_one_hot, atom_encoder, aa_encoder):
atom_decoder = list(atom_encoder.keys())
atom_counts = {k: 0 for k in atom_encoder.keys()}
for a in [atom_decoder[x] for x in lig_one_hot.argmax(1)]:
atom_counts[a] += 1
aa_decoder = list(aa_encoder.keys())
aa_counts = {k: 0 for k in aa_encoder.keys()}
for r in [aa_decoder[x] for x in pocket_one_hot.argmax(1)]:
aa_counts[r] += 1
return atom_counts, aa_counts
def saveall(filename, pdb_and_mol_ids, lig_coords, lig_one_hot, lig_mask,
pocket_coords, pocket_quaternion, pocket_one_hot, pocket_mask):
np.savez(filename,
names=pdb_and_mol_ids,
lig_coords=lig_coords,
lig_one_hot=lig_one_hot,
lig_mask=lig_mask,
pocket_coords=pocket_coords,
pocket_quaternion=pocket_quaternion,
pocket_one_hot=pocket_one_hot,
pocket_mask=pocket_mask
)
return True
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('basedir', type=Path)
parser.add_argument('--outdir', type=Path, default=None)
parser.add_argument('--qed_thresh', type=float, default=0.3)
parser.add_argument('--max_occurences', type=int, default=50)
parser.add_argument('--num_val', type=int, default=300)
parser.add_argument('--num_test', type=int, default=300)
parser.add_argument('--dist_cutoff', type=float, default=8.0)
parser.add_argument('--ca_only', action='store_true')
parser.add_argument('--random_seed', type=int, default=42)
parser.add_argument('--make_split', action='store_true')
args = parser.parse_args()
pdbdir = args.basedir / 'BindingMOAD_2020/'
# Make output directory
if args.outdir is None:
suffix = '' if 'H' in atom_dict else '_noH'
suffix += '_ca_only' if args.ca_only else '_full'
processed_dir = Path(args.basedir, f'processed{suffix}')
else:
processed_dir = args.outdir
processed_dir.mkdir(exist_ok=True, parents=True)
if args.make_split:
# Process the label file
csv_path = args.basedir / 'every.csv'
ligand_dict = read_label_file(csv_path)
ligand_dict = compute_druglikeness(ligand_dict)
filtered_examples = filter_and_flatten(
ligand_dict, args.qed_thresh, args.max_occurences, args.random_seed)
print(f'{len(filtered_examples)} examples after filtering')
# Make data split
data_split = split_by_ec_number(filtered_examples, args.num_val,
args.num_test)
else:
# Use precomputed data split
data_split = {}
for split in ['test', 'val', 'train']:
with open(f'data/moad_{split}.txt', 'r') as f:
pocket_ids = f.read().split(',')
# (ec-number, protein, molecule tuple)
data_split[split] = [(None, x.split('_')[0][:4], (x.split('_')[1],))
for x in pocket_ids]
n_train_before = len(data_split['train'])
n_val_before = len(data_split['val'])
n_test_before = len(data_split['test'])
# Read and process PDB files
n_samples_after = {}
for split in data_split.keys():
lig_coords = []
lig_one_hot = []
lig_mask = []
pocket_coords = []
pocket_one_hot = []
pocket_mask = []
pdb_and_mol_ids = []
receptors = []
count = 0
pdb_sdf_dir = processed_dir / split
pdb_sdf_dir.mkdir(exist_ok=True)
n_tot = len(data_split[split])
pair_dict = ligand_list_to_dict(data_split[split])
tic = time()
num_failed = 0
with tqdm(total=n_tot) as pbar:
for p in pair_dict:
pdb_successful = set()
# try all available .bio files
for pdbfile in sorted(pdbdir.glob(f"{p.lower()}.bio*")):
# Skip if all ligands have been processed already
if len(pair_dict[p]) == len(pdb_successful):
continue
pdb_struct = PDBParser(QUIET=True).get_structure('', pdbfile)
struct_copy = pdb_struct.copy()
n_bio_successful = 0
for m in pair_dict[p]:
# Skip already processed ligand
if m[0] in pdb_successful:
continue
ligand_name, ligand_chain, ligand_resi = m[0].split(':')
ligand_resi = int(ligand_resi)
try:
ligand_data, pocket_data = process_ligand_and_pocket(
pdb_struct, ligand_name, ligand_chain, ligand_resi,
dist_cutoff=args.dist_cutoff, ca_only=args.ca_only)
except (KeyError, AssertionError, FileNotFoundError,
IndexError, ValueError) as e:
# print(type(e).__name__, e)
continue
pdb_and_mol_ids.append(f"{p}_{m[0]}")
receptors.append(pdbfile.name)
lig_coords.append(ligand_data['lig_coords'])
lig_one_hot.append(ligand_data['lig_one_hot'])
lig_mask.append(
count * np.ones(len(ligand_data['lig_coords'])))
pocket_coords.append(pocket_data['pocket_coords'])
# pocket_quaternion.append(
# pocket_data['pocket_quaternion'])
pocket_one_hot.append(pocket_data['pocket_one_hot'])
pocket_mask.append(
count * np.ones(len(pocket_data['pocket_coords'])))
count += 1
pdb_successful.add(m[0])
n_bio_successful += 1
# Save additional files for affinity analysis
if split in {'val', 'test'}:
# if split in {'val', 'test', 'train'}:
# remove ligand from receptor
try:
struct_copy[0][ligand_chain].detach_child((f'H_{ligand_name}', ligand_resi, ' '))
except KeyError:
warnings.warn(f"Could not find ligand {(f'H_{ligand_name}', ligand_resi, ' ')} in {pdbfile}")
continue
# Create SDF file
atom_types = [atom_decoder[np.argmax(i)] for i in ligand_data['lig_one_hot']]
xyz_file = Path(pdb_sdf_dir, 'tmp.xyz')
utils.write_xyz_file(ligand_data['lig_coords'], atom_types, xyz_file)
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("xyz", "sdf")
mol = openbabel.OBMol()
obConversion.ReadFile(mol, str(xyz_file))
xyz_file.unlink()
name = f"{p}-{pdbfile.suffix[1:]}_{m[0]}"
sdf_file = Path(pdb_sdf_dir, f'{name}.sdf')
obConversion.WriteFile(mol, str(sdf_file))
# specify pocket residues
with open(Path(pdb_sdf_dir, f'{name}.txt'), 'w') as f:
f.write(' '.join(pocket_data['pocket_ids']))
if split in {'val', 'test'} and n_bio_successful > 0:
# if split in {'val', 'test', 'train'} and n_bio_successful > 0:
# create receptor PDB file
pdb_file_out = Path(pdb_sdf_dir, f'{p}-{pdbfile.suffix[1:]}.pdb')
io = PDBIO()
io.set_structure(struct_copy)
io.save(str(pdb_file_out), select=Model0())
pbar.update(len(pair_dict[p]))
num_failed += (len(pair_dict[p]) - len(pdb_successful))
pbar.set_description(f'#failed: {num_failed}')
lig_coords = np.concatenate(lig_coords, axis=0)
lig_one_hot = np.concatenate(lig_one_hot, axis=0)
lig_mask = np.concatenate(lig_mask, axis=0)
pocket_coords = np.concatenate(pocket_coords, axis=0)
pocket_one_hot = np.concatenate(pocket_one_hot, axis=0)
pocket_mask = np.concatenate(pocket_mask, axis=0)
np.savez(processed_dir / f'{split}.npz', names=pdb_and_mol_ids,
receptors=receptors, lig_coords=lig_coords,
lig_one_hot=lig_one_hot, lig_mask=lig_mask,
pocket_coords=pocket_coords, pocket_one_hot=pocket_one_hot,
pocket_mask=pocket_mask)
n_samples_after[split] = len(pdb_and_mol_ids)
print(f"Processing {split} set took {(time() - tic)/60.0:.2f} minutes")
# --------------------------------------------------------------------------
# Compute statistics & additional information
# --------------------------------------------------------------------------
with np.load(processed_dir / 'train.npz', allow_pickle=True) as data:
lig_mask = data['lig_mask']
pocket_mask = data['pocket_mask']
lig_coords = data['lig_coords']
lig_one_hot = data['lig_one_hot']
pocket_one_hot = data['pocket_one_hot']
# Compute SMILES for all training examples
train_smiles = compute_smiles(lig_coords, lig_one_hot, lig_mask)
np.save(processed_dir / 'train_smiles.npy', train_smiles)
# Joint histogram of number of ligand and pocket nodes
n_nodes = get_n_nodes(lig_mask, pocket_mask, smooth_sigma=1.0)
np.save(Path(processed_dir, 'size_distribution.npy'), n_nodes)
# Convert bond length dictionaries to arrays for batch processing
bonds1, bonds2, bonds3 = get_bond_length_arrays(atom_dict)
# Get bond length definitions for Lennard-Jones potential
rm_LJ = get_lennard_jones_rm(atom_dict)
# Get histograms of ligand and pocket node types
atom_hist, aa_hist = get_type_histograms(lig_one_hot, pocket_one_hot,
atom_dict, amino_acid_dict)
# Create summary string
summary_string = '# SUMMARY\n\n'
summary_string += '# Before processing\n'
summary_string += f'num_samples train: {n_train_before}\n'
summary_string += f'num_samples val: {n_val_before}\n'
summary_string += f'num_samples test: {n_test_before}\n\n'
summary_string += '# After processing\n'
summary_string += f"num_samples train: {n_samples_after['train']}\n"
summary_string += f"num_samples val: {n_samples_after['val']}\n"
summary_string += f"num_samples test: {n_samples_after['test']}\n\n"
summary_string += '# Info\n'
summary_string += f"'atom_encoder': {atom_dict}\n"
summary_string += f"'atom_decoder': {list(atom_dict.keys())}\n"
summary_string += f"'aa_encoder': {amino_acid_dict}\n"
summary_string += f"'aa_decoder': {list(amino_acid_dict.keys())}\n"
summary_string += f"'bonds1': {bonds1.tolist()}\n"
summary_string += f"'bonds2': {bonds2.tolist()}\n"
summary_string += f"'bonds3': {bonds3.tolist()}\n"
summary_string += f"'lennard_jones_rm': {rm_LJ.tolist()}\n"
summary_string += f"'atom_hist': {atom_hist}\n"
summary_string += f"'aa_hist': {aa_hist}\n"
summary_string += f"'n_nodes': {n_nodes.tolist()}\n"
# Write summary to text file
with open(processed_dir / 'summary.txt', 'w') as f:
f.write(summary_string)
# Print summary
print(summary_string)