-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloaders.py
executable file
·236 lines (221 loc) · 9.91 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import numpy as np
from PIL import Image
import os, sys
import glob
import pandas as pd
from math import ceil
from time import time
import torch
from torch.autograd import Variable
from collections import defaultdict
import torch.nn.functional as F
import torchvision
from torchvision import transforms
import torchvision.datasets as dset
from torch.utils.data.dataloader import default_collate
import torch.optim as optim
from torch import nn
from torch.distributions import MultivariateNormal
class FewShotSampler:
def __init__(self, num_cls=200, img_per_class=500, max_batch_cls=None,
max_img_per_class=None,
separate=False, exact=False,
iter=None,
timesteps=15, batch_size=64):
"""
Args:
num_cls: overall number of classes
img_per_class (int or iterable with ints): for each class, number of objects in it
timesteps: number of shots in few-shot learning task
batch_size: batch size
exact: whether to threat max_batch_cls or max_img_per_class as
upper bound on random number (of classes or images resp.)
or as the exact numbers
separate: whether to split data into objects for reconstruction and
few-shots conditions
max_batch_cls: maximum number of classes in few-shot condition set
max_img_per_class: maximum number of images per class in few-shot condition set
"""
if max_batch_cls is None and max_img_per_class is None:
raise ValueError('specify either max_batch_cls or '
'max_img_per_class')
if max_batch_cls is not None and max_img_per_class is not None:
raise ValueError('max_batch_cls is muturally exclusive '
'with max_img_per_class')
if exact:
if max_batch_cls is not None:
if timesteps % max_batch_cls != 0:
raise ValueError('maximum number of classes should '
'be divisor of the number of shots')
if max_img_per_class is not None:
if timesteps % max_img_per_class != 0:
raise ValueError('maximum number of images per class '
'should be divisor of the number of short')
self.num_cls = num_cls
self.separate = separate
self.iter = iter
self.exact = exact
self.batch_size = batch_size
self.timesteps = timesteps
self.img_per_class = img_per_class
self.max_batch_cls = max_batch_cls
self.max_img_per_class = max_img_per_class
self.acc = {}
acc = 0
if isinstance(self.img_per_class, int):
imgs_per_class = self.img_per_class
self.img_per_class = {}
for i in range(self.num_cls):
self.img_per_class[i] = imgs_per_class
self.total = sum(self.img_per_class.values())
for i, c in self.img_per_class.items():
self.acc[i] = acc
acc += c
self.acc[len(self.img_per_class)] = self.total
self.classes = np.zeros(sum(self.img_per_class.values()), dtype=np.int32)
self.objects = {}
for i in range(len(self.acc) - 1):
self.classes[self.acc[i]: self.acc[i + 1] + 1] = i
self.objects[i] = np.arange(self.acc[i], self.acc[i + 1])
self.stats = defaultdict(int)
self.stats1 = defaultdict(int)
self.time = 0
def __len__(self):
if self.iter is not None:
return self.iter
return int(ceil(self.total / self.batch_size))
def sample_class(self, clz, max_samples, current=None, exact=False):
if (not self.exact or self.max_batch_cls is not None) and not exact:
num_to_sample = np.random.randint(1, max_samples + 1)
else:
num_to_sample = max_samples
img_per_class = self.img_per_class[clz]
objects = self.objects[clz]
if current is not None:
objects = objects[objects != current]
return np.random.choice(objects, num_to_sample, replace=False).tolist()
def __iter__(self):
c = 0
c1 = 0
total = sum(self.img_per_class.values())
perm = np.random.permutation(total)
while True:
t = time()
if c >= len(self):
break
conds = []
if (c1 * self.batch_size) > len(perm):
c1 = 0
perm = np.random.permutation(total)
x_batch = perm[c1 * self.batch_size: (c1 + 1) * self.batch_size]
else:
x_batch = perm[c1 * self.batch_size: (c1 + 1) * self.batch_size]
c1 += 1
classes = self.classes[x_batch]
if self.timesteps == 0:
yield x_batch
c += 1
continue
for j in range(len(x_batch)):
conds.append([])
obj = x_batch[j]
clz = classes[j]
cls_perm = np.random.permutation(self.num_cls)
cls_perm = cls_perm[cls_perm != clz]
if self.max_img_per_class is not None:
max_samples = min(self.max_img_per_class, self.timesteps)
conds[-1] += self.sample_class(clz, max_samples=max_samples, current=obj)
k = 0
while len(conds[-1]) != self.timesteps:
max_samples = min(self.max_img_per_class, self.timesteps - len(conds[-1]))
conds[-1] += self.sample_class(cls_perm[k], max_samples=max_samples)
k += 1
elif self.max_batch_cls is not None:
if not self.exact:
max_ = min(self.max_batch_cls, self.timesteps)
num_cls = np.random.randint(1, max_ + 1)
else:
num_cls = self.max_batch_cls
self.stats1[num_cls] += 1
if num_cls == 0:
conds[-1] += self.sample_class(clz, self.timesteps,
current=obj, exact=True)
else:
max_samples = min(self.timesteps - num_cls, self.img_per_class[clz]) + 1
exact = max_samples == self.timesteps
conds[-1] += self.sample_class(clz, max_samples, current=obj, exact=exact)
k = 0
while len(conds[-1]) != self.timesteps:
k += 1
if k == num_cls:
max_samples = self.timesteps - num_cls + k + 1 - len(conds[-1])
exact = False
else:
max_samples = self.timesteps - len(conds[-1])
exact = True
sampled = self.sample_class(cls_perm[k - 1], max_samples, exact=exact)
conds[-1] += sampled
self.stats[k + 1] += 1
conds[-1] = np.array(conds[-1])
conds = np.row_stack(conds)
self.time += time() - t
yield np.column_stack([conds, x_batch]).flatten()
c += 1
class FewShotCollate:
def __init__(self, timesteps, device=0):
self.timesteps = timesteps
self.device = device
def __call__(self, batch):
data, labs = default_collate(batch)
#data = data.to(self.device, non_blocking=True)
#labs = labs.to(self.device, non_blocking=True)
data = data.view(data.shape[0], -1)
x_dim = data.shape[1]
timesteps = self.timesteps
batch_size = data.shape[0] // (timesteps + 1)
data = data.view(batch_size, timesteps + 1, x_dim)
labs = labs.view(batch_size, timesteps + 1)
conds, x = data[:, :-1].contiguous(), data[:, -1].contiguous()
cond_labs, labs = labs[:, :-1].contiguous(), labs[:, -1].contiguous()
return (conds, x), (cond_labs, labs)
def few_shot_mnist(root, train=True, batch_size=128, timesteps=15, n_jobs=0, **kwargs):
train_set = dset.MNIST(
root=root, train=train, download=True,
transform=transforms.ToTensor(),
)
sort = train_set.targets.argsort()
train_set.targets = train_set.targets[sort].contiguous()
train_set.data = train_set.data[sort].contiguous()
# counts of images per class
cnts = (pd.Series(train_set.targets.numpy())
.to_frame('cls').reset_index()
.groupby('cls')['index'].count()
.to_dict())
collate = FewShotCollate(timesteps=timesteps)
batch_sampler = FewShotSampler(
num_cls=10, img_per_class=cnts, separate=True,
batch_size=batch_size, timesteps=timesteps, **kwargs
)
return torch.utils.data.DataLoader(
dataset=train_set, batch_sampler=batch_sampler,
collate_fn=collate, num_workers=n_jobs
)
def few_shot_omniglot(root, train=True, batch_size=128, timesteps=15,
n_jobs=0, resize=28, **kwargs):
train_set = dset.Omniglot(root=root, download=True, background=train,
transform=transforms.Compose([
transforms.Resize([resize, resize], interpolation=Image.NEAREST),
transforms.ToTensor(),
transforms.Lambda(lambda x: 1 - x)
]))
collate = FewShotCollate(timesteps=timesteps)
sampler = FewShotSampler(
num_cls=len(train_set._character_images),
batch_size=batch_size, separate=True,
timesteps=timesteps, **kwargs,
img_per_class=len(train_set._character_images[0]),
)
return torch.utils.data.DataLoader(
dataset=train_set, batch_sampler=sampler,
collate_fn=collate, num_workers=n_jobs
)