forked from SKRohit/Generating_Text_Summary_With_GPT2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmax_article_sizes.py
65 lines (55 loc) · 2.09 KB
/
max_article_sizes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import sys
import time
import numpy as np
import pickle
import matplotlib.pyplot as plt
def make_dir(path):
if not os.path.exists(path):
os.mkdir(path)
os.chdir(path)
#calculates no of words in cnn/dm articles
def calc_article_sizes(file_name, name):
max_len = 0
article_sizes = {}
start = time.time()
print("Calculating",name, "Article Sizes......")
for i,file in zip(os.listdir(file_name)):
file = os.path.join(os.getcwd(),file_name,file)
with open(file,'r',encoding='utf-8') as f:
txt = f.read().split()
txt_len = len(txt)
article_sizes[os.path.basename(file)] = txt_len
if max_len<txt_len:
max_len = txt_len
max_len_filename = os.path.basename(file)
if i%100==0:
print(i+1, " files read")
return max_len, max_len_filename, article_sizes
if __name__ == '__main__':
if sys.argv[1].startswith("cnn"):
name = "CNN"
else:
name = "DM"
make_dir("./"+name)
max_len, max_len_filename, article_sizes = calc_article_sizes(sys.argv[1], name)
sorted_article_values = np.array(sorted(article_sizes.values()))
article_sizes = dict(sorted(article_sizes.items(), key=lambda item:item[1]))
print("saving_article_files_sizes_info...")
os.chdir(name)
with open(name+"_file_size.pickle", 'wb') as f:
pickle.dump(article, f)
#plot the distribution of articles sizes
plt.hist(sorted_article_values,color='blue',bins=6, edgecolor = 'black')
plt.title(name+"_Files_Distribution_By_Size(no. of words)")
plt.xlabel('No Of Words')
plt.ylabel('Files')
plt.show()
plt.savefig(name+" files distribution by length")
print('max_length_of_article_in_article: ',max_len, " and file_name is ", max_len_filename)
print("total_time_taken",(time.time()-start)/60, " minutes")
print("mean_length_of_article_articles: ", sum(article.values())/len(article))
print("max_10_lengths_of_article_articles:", sorted_article_values[-50:])
print("number_of_articles_greater_than_1000_words: ", sum(sorted_article_values>1000))
print("number_of_articles_greater_than_1500_words: ", sum(sorted_article_values>1500))
print("number_of_articles_greater_than_2000_words: ", sum(sorted_article_values>2000))