-
Notifications
You must be signed in to change notification settings - Fork 61
/
train.py
executable file
·233 lines (208 loc) · 8.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# Copyright (c) 2016 Artsiom Sanakoyeu
from __future__ import division
from chainer import iterators
import cmd_options
import dataset
import os
import time
import regressionnet
import tensorflow as tf
import copy
from tqdm import tqdm
import numpy as np
import math
import pprint
import datetime
from regressionnet import evaluate_pcp, create_sumamry
def evaluate(net, pose_loss_op, test_iterator, summary_writer, tag='test/pose_loss'):
test_it = copy.copy(test_iterator)
total_loss = 0.0
cnt = 0
num_batches = int(math.ceil(len(test_it.dataset) / test_it.batch_size))
print len(test_it.dataset)
for batch in tqdm(test_it, total=num_batches):
feed_dict = regressionnet.fill_joint_feed_dict(net,
regressionnet.batch2feeds(batch)[:3],
conv_lr=0.0,
fc_lr=0.0,
phase='test')
global_step, loss_value = net.sess.run([net.global_iter_counter, pose_loss_op],
feed_dict=feed_dict)
total_loss += loss_value * len(batch)
cnt += len(batch)
avg_loss = total_loss / len(test_it.dataset)
print 'Step {} {} = {:.3f}'.format(global_step, tag, avg_loss)
summary_writer.add_summary(create_sumamry(tag, avg_loss),
global_step=global_step)
assert cnt == 1000, 'cnt = {}'.format(cnt)
def train_loop(net, saver, loss_op, pose_loss_op, train_op, dataset_name, train_iterator, test_iterator,
val_iterator=None,
max_iter=None,
test_step=None,
snapshot_step=None,
log_step=1,
batch_size=None,
conv_lr=None,
fc_lr=None,
fix_conv_iter=None,
output_dir='results',
):
summary_step = 50
with net.graph.as_default():
summary_writer = tf.summary.FileWriter(output_dir, net.sess.graph)
summary_op = tf.summary.merge_all()
fc_train_op = net.graph.get_operation_by_name('fc_train_op')
global_step = None
for step in xrange(max_iter + 1):
# test, snapshot
if step % test_step == 0 or step + 1 == max_iter or step == fix_conv_iter:
global_step = net.sess.run(net.global_iter_counter)
evaluate_pcp(net, pose_loss_op, test_iterator, summary_writer,
dataset_name=dataset_name,
tag_prefix='test')
if val_iterator is not None:
evaluate_pcp(net, pose_loss_op, val_iterator, summary_writer,
dataset_name=dataset_name,
tag_prefix='val')
if step % snapshot_step == 0 and step > 1:
checkpoint_prefix = os.path.join(output_dir, 'checkpoint')
assert global_step is not None
saver.save(net.sess, checkpoint_prefix, global_step=global_step)
if step == max_iter:
break
# training
start_time = time.time()
feed_dict = regressionnet.fill_joint_feed_dict(net,
regressionnet.batch2feeds(train_iterator.next())[:3],
conv_lr=conv_lr,
fc_lr=fc_lr,
phase='train')
if step < fix_conv_iter:
feed_dict['lr/conv_lr:0'] = 0.0
if step < fix_conv_iter:
cur_train_op = fc_train_op
else:
cur_train_op = train_op
if step % summary_step == 0:
global_step, summary_str, _, loss_value = net.sess.run(
[net.global_iter_counter,
summary_op,
cur_train_op,
pose_loss_op],
feed_dict=feed_dict)
summary_writer.add_summary(summary_str, global_step=global_step)
else:
global_step, _, loss_value = net.sess.run(
[net.global_iter_counter, cur_train_op, pose_loss_op],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % log_step == 0 or step + 1 == max_iter:
print('Step %d: train/pose_loss = %.2f (%.3f s, %.2f im/s)'
% (global_step, loss_value, duration,
batch_size // duration))
def main(argv):
"""
Run training of the Deeppose stg-1
"""
args = cmd_options.get_arguments(argv)
if not os.path.exists(args.o_dir):
os.makedirs(args.o_dir)
suffix = datetime.datetime.now().strftime("%y%m%d_%H%M%S")
with open(os.path.join(args.o_dir, 'params.dump_{}.txt'.format(suffix)), 'w') as f:
f.write('{}\n'.format(pprint.pformat(args)))
net, loss_op, pose_loss_op, train_op = regressionnet.create_regression_net(
n_joints=args.n_joints,
init_snapshot_path=args.snapshot,
is_resume=args.resume,
reset_iter_counter=args.reset_iter_counter,
reset_moving_averages=args.reset_moving_averages,
optimizer_type=args.optimizer,
gpu_memory_fraction=0.32, # Set how much GPU memory to reserve for the network
net_type=args.net_type)
with net.graph.as_default():
saver = tf.train.Saver()
print 'args.resume: {}\nargs.snapshot: {}'.format(args.resume, args.snapshot)
bbox_extension_range = (args.bbox_extension_min, args.bbox_extension_max)
if bbox_extension_range[0] is None or bbox_extension_range[1] is None:
bbox_extension_range = None
test_bbox_extension_range = None
else:
test_bbox_extension_range = (bbox_extension_range[1], bbox_extension_range[1])
train_dataset = dataset.PoseDataset(
args.train_csv_fn, args.img_path_prefix, args.im_size,
fliplr=args.fliplr,
rotate=args.rotate,
rotate_range=args.rotate_range,
shift=args.shift,
bbox_extension_range=bbox_extension_range,
min_dim=args.min_dim,
coord_normalize=args.coord_normalize,
gcn=args.gcn,
fname_index=args.fname_index,
joint_index=args.joint_index,
symmetric_joints=args.symmetric_joints,
ignore_label=args.ignore_label,
should_downscale_images=args.should_downscale_images,
downscale_height=args.downscale_height
)
test_dataset = dataset.PoseDataset(
args.test_csv_fn, args.img_path_prefix, args.im_size,
fliplr=False, rotate=False,
shift=None,
bbox_extension_range=test_bbox_extension_range,
coord_normalize=args.coord_normalize,
gcn=args.gcn,
fname_index=args.fname_index,
joint_index=args.joint_index,
symmetric_joints=args.symmetric_joints,
ignore_label=args.ignore_label,
should_return_bbox=True,
should_downscale_images=args.should_downscale_images,
downscale_height=args.downscale_height
)
np.random.seed(args.seed)
train_iterator = iterators.MultiprocessIterator(train_dataset, args.batch_size,
n_processes=args.workers, n_prefetch=3)
test_iterator = iterators.MultiprocessIterator(
test_dataset, args.batch_size,
repeat=False, shuffle=False,
n_processes=1, n_prefetch=1)
val_iterator = None
if args.val_csv_fn is not None and args.val_csv_fn != '':
small_train_dataset = dataset.PoseDataset(
args.val_csv_fn,
args.img_path_prefix, args.im_size,
fliplr=False, rotate=False,
shift=None,
bbox_extension_range=test_bbox_extension_range,
coord_normalize=args.coord_normalize,
gcn=args.gcn,
fname_index=args.fname_index,
joint_index=args.joint_index,
symmetric_joints=args.symmetric_joints,
ignore_label=args.ignore_label,
should_return_bbox=True,
should_downscale_images=args.should_downscale_images,
downscale_height=args.downscale_height
)
val_iterator = iterators.MultiprocessIterator(
small_train_dataset, args.batch_size,
repeat=False, shuffle=False,
n_processes=1, n_prefetch=1)
train_loop(net, saver, loss_op, pose_loss_op, train_op, args.dataset_name,
train_iterator, test_iterator,
val_iterator=val_iterator,
max_iter=args.max_iter,
test_step=args.test_step,
log_step=args.log_step,
snapshot_step=args.snapshot_step,
batch_size=args.batch_size,
conv_lr=args.conv_lr,
fc_lr=args.fc_lr,
fix_conv_iter=args.fix_conv_iter,
output_dir=args.o_dir
)
if __name__ == '__main__':
import sys
main(sys.argv[1:])