-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_project_task2.m
110 lines (85 loc) · 3.09 KB
/
final_project_task2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
% Final Project - Task 2
% Andrea Senacheribbe s224178
clear variables
clc
close all
% signals and filter definitions
% params of the filter
wc=20;
dt=0.005;
t_max=1;
N_tot=t_max/dt; %number of samples
t=(0:(N_tot-1))*dt;
ha= wc*exp(-wc*t)+2*wc*(sqrt(3)/3)*exp(-wc*t/2).*cos(-wc*(sqrt(3)/2)*t+5*pi/6);
%defining the input signal
x=zeros(N_tot,1);
x(1)=1; %discrete delta
y=zeros(N_tot,1);
k=zeros(N_tot,1);
%constants of finite difference equation
A=(wc*dt)/(2+wc*dt);
B=(2-wc*dt)/(2+wc*dt);
C=((wc*dt)^2)/(4+2*wc*dt+(wc*dt)^2);
D=(8-2*(wc*dt)^2)/(4+2*wc*dt+(wc*dt)^2);
E=(-4+2*wc*dt-(wc*dt)^2)/(4+2*wc*dt+(wc*dt)^2);
% computing the output of H1
k(1)=A*x(1);
for i=2:N_tot
k(i)=A*(x(i)+x(i-1))+B*k(i-1);
end
% computing the output of H2
y(1)=C*k(1);
y(2)=C*(k(2)+2*k(1))+D*y(1);
for i=3:N_tot
y(i)=C*(k(i)+2*k(i-1)+k(i-2))+D*y(i-1)+E*y(i-2);
end
figure('PaperOrientation','landscape')
stem(t, y/dt), hold on, grid on %plotting discrete impulse response
plot(t,ha) % vs continuos
title('Impulse response of the filter'), legend('discrete', 'continuous')
xlabel('t (sec)'), ylabel('h[t/\Deltat], h_a(t)')
print('latex/graphics/task2/impulse_resp','-dpdf')
% frequency response
%defining discrete transfer function
H1 = @(z) (wc*dt*(1+z.^-1))./((z.^-1)*(-2+wc*dt)+2+wc*dt);
H2 = @(z) (wc*dt)^2*(1+z.^-2+2*z.^-1)./((z.^-2)*(4+(wc*dt)^2-2*wc*dt)+(z.^-1)*(-8+2*(wc*dt)^2)+4+(wc*dt)^2+2*wc*dt);
Haf= @(f) (wc^6)./(wc^6+(2*pi*f).^6); %square modulus of frequency response
df=0.01;
f=-(1/(dt)):df:(1/(dt));
dtft=abs(H1(exp(1j*2*pi*f*dt)).*H2(exp(1j*2*pi*f*dt)));
figure('PaperOrientation','landscape')
plot(f, dtft), hold on, grid on
plot(f, sqrt(Haf(f)))
title('Modulus of frequency response'), legend('DTFT', 'analog')
xlabel('f (Hz)'), ylabel('|DTFT[f]|, |H_a(f)|')
axis([-Inf, Inf, -Inf, 1.05])
print('latex/graphics/task2/frequency_resp_lin','-dpdf')
figure('PaperOrientation','landscape')
semilogx(f, 20*log10(dtft)), hold on, grid on
semilogx(f, 10*log10(Haf(f)))
title('Modulus of frequency response (logaritmic scale)'), legend('DTFT', 'analog')
xlabel('log_{10}(f/f0)'), ylabel('20log_{10}|DTFT[f]|, 20log_{10}|H_a(f)|')
axis([-Inf, 1/(2*dt), 10*log10(Haf(1/(2*dt))),3])
print('latex/graphics/task2/frequency_resp_log','-dpdf')
% FFT
f=(-N_tot/2:N_tot/2-1)/(N_tot*dt);
fft_y=abs(fftshift(fft(y)));
figure('PaperOrientation','landscape')
plot(f, fft_y), grid on, hold on
plot(f, sqrt(Haf(f)))
title('Modulus of FFT and analog frequency response'), legend('FFT', 'analog')
xlabel('f (Hz)'), ylabel('|FFT[f]|, |H_a(f)|')
axis([-Inf, Inf, -Inf, 1.05])
print('latex/graphics/task2/fft','-dpdf')
figure('PaperOrientation','landscape')
plot(f, 20*log10(fft_y)), grid on, hold on
plot(f, 10*log10(Haf(f)))
title('Modulus of FFT and analog frequency response (log scale on y)'), legend('FFT', 'analog')
xlabel('f (Hz)'), ylabel('20log_{10}|FFT[f]|, 20log_{10}|Ha(f)|')
axis([-Inf, Inf, 10*log10(Haf(1/(2*dt))),3])
print('latex/graphics/task2/fft_log','-dpdf')
%energy
ha2= @(t) (wc*exp(-wc*t)+2*wc*(sqrt(3)/3)*exp(-wc*t/2).*cos(-wc*(sqrt(3)/2)*t+5*pi/6)).^2;
energy_the=integral(ha2, 0, Inf)
energy_hn=y'*y/dt
energy_hk=fft_y'*fft_y