
Integer Linear Programming for Semantic Role Labeling

Jacob Eisenstein

October 23, 2014

Here’s our example:
S

VP

PP

NNS

claws

P

with

NP

NN

people

VBP

scratch

NP

NNS

cats

Let’s say that the correct annotation is

• [cats]a0

• [scratch]v

• [people]a1

• [with claws]am−mnr

• [with]∅

• [claws]∅

• [scratch people with claws]∅

(The tag am-mnr means argument modifier – manner)
For each potential argument i, and for each tag t, define

Yi,t =

{
1, argument i takes tag t

0, otherwise
(1)

Now suppose we define a feature function, where

f(y,w, i, t) = δ(Yi,t = y), (2)

and set the weight
θ(y,w, i, t) = logP (wi|yi = t). (3)

1

Then we have,

θTf(y,w) =
∑
i,t

θTf(yi,t,w, i, t) (4)

=
∑
i

logP (wi|yi = t) (5)

≈ logP (w|y, τ), (6)

where τ is the parse tree.
More reasonably, we can define a rich local feature function f(yi,t,w, i, t), using features

like the ones given by Gildea and Manning. In either case, J is a linear function of the integer
(binary) variables y. Such optimization problems are called Integer Linear Programs
(ILP). They fit into our usual form for linear prediction:

ŷ = arg max
y∈Y(w,τ)

θTf(y,w, τ), (7)

where Y(w, τ) is the set of allowable labelings.
Because y is decoupled, we can optimize this easily: just solve separately for each yi,

obtaining the best label t for each constituent i. But this could lead to some bad outcomes.

• Multiple arguments of the same type:
[cats]a0 scratch [people]a0 with claws

• Overlapping arguments:
[with [claws]a1]a2

• Illegal arguments for the predicate:
[cats]a0 scratch [people]a1[with claws]a2

1

• Reference arguments without referents:

– ok: [The deregulation]A1 of railroads [that]R−A1 began [in 1980]AM−TMP

– not ok: [The deregulation]A1 of railroads [that]R−A0 began [in 1980]AM−TMP

Rather than incorporating global factors into the objective, we’ll treat them as con-
straints, and solve a constrained optimization problem,

ŷ =arg max
y∈Y(w,τ)

θTf(y,w, τ) (8)

s.t.y ∈ C(w, τ) (9)

Where the constraint set C(w, τ) requires things like:

• All arguments get at most one label, ∀i
∑

t yi,t = 1. Note we use equality, because you
can always have the ∅ label.

1I’m not sure if a2 is really illegal here, but the point is that scratch is not a ditransitive verb, so it can’t
take a second direct object.

2

• No duplicate argument classes, ∀t 6= ∅,
∑

i yi,t ≤ 1

• Overlapping arguments get at most one non-null label:

∀〈i, j〉 : i τ j, yi,∅ + yj,∅ ≥ 1 (10)

• Some arguments are forbidden, e.g.
∑

i yi,A2 = 0

• Reference arguments must have referents

∀iyi,R−A0 ≤
∑
j

yj,A0

∀iyi,R−A1 ≤
∑
j

yj,A1, . . .

• Continuation argument must follow the referent

∀iyi,C−A0 ≤
∑
j<i

yj,A0

∀iyi,C−A1 ≤
∑
j<i

yj,A1, . . .

All of the constraints are linear, meaning we can write them as Ay ≤ b.
Unfortunately, constrained integer linear programming (ILP) is NP-Hard. It’s easy to

see this by reduction from TSP, boolean satisfiability, or minimum vertex cover. However,
there are well-optimized algorithms for ILP, such as cutting plane and branch and bound,
implemented in solvers like GLPK (free) or CPLEX (expensive). You just precompute the
scores ψi,t = θTf(yi,t,w, i, t) for all 〈i, t〉, write out the constraints, and send it to the solver.

Punyakanok et al (2004) “It only takes about 10 minutes to solve the inference problem
for all 4305 sentences on a Pentium-III 800 Mhz machine in our experiments.”

Adding more parses Now, suppose we ran another parser and got another parse:
S

VP

NP

PP

NNS

claws

P

with

NN

people

VBP

scratch

NP

NNS

cats

Now we have another possible argument: [people with claws]. We can just include this
argument with the ones that we got from the other parse, as long as we add the appropriate
constraints to prevent overlapping.

3

This allows us to combine many possible parse trees, and even to select arguments that
are constituents from different trees. Punyakanok, Roth, and Yi (2007) showed that this
flexibility yields a big boost in accuracy.

4

