-
Notifications
You must be signed in to change notification settings - Fork 2
/
Sparsity_v24_sparsity_in_spectrograms_with_resolution_sup.m
294 lines (274 loc) · 16.2 KB
/
Sparsity_v24_sparsity_in_spectrograms_with_resolution_sup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
% Warped stretch group delay design by spectrotemporal distribution
% By Ata Mahjoubfar and Claire Chen at Jalali-Lab, UCLA
clear all
clc
lambda = 1.5e-6; % Carrier wavelength [m]
c = 299792458; % Speed of light [m/s]
f0 = c/lambda; % Carrier frequency [Hz]
Fs = 1e13; % Sampling rate [Hz]
dt = 1/Fs; % Time simulation resolution [s]
max_t = 0.333e-8; % Maximum simulation time [s]
t = -max_t : dt : max_t; % Time samples [s]
N = length(t); % Number of samples
df = 0.5/max_t; % Frequency simulation resolution [Hz]
f = -0.5/dt : df : 0.5/dt; % Frequency samples [Hz]
f_GD = (f(2:end)+f(1:end-1))/2; % Frequencies of GD samples
f_GDD = f(2:end-1); % Frequencies of GDD samples
added_chirp = exp(-1j*1e-13*pi*f.^2*(max_t)) .* exp(+1j*2e-26*pi*f.^3*(max_t)); % Input signal chirp
asymmetry = true; % Input spectrum asymmetry
switch 'set spectral shape'
case 'set temporal shape'
E_in_t = 1.5e3.*(exp(-((t-7e-12)/1e-12).^2)+0.7*exp(-((t+7e-12)/1e-12).^2)+10*exp(-(t/2e-13).^2)); % Complex envelope of input electric field in time [V/m]
E_in_f = 1/Fs * added_chirp.*fftshift(fft(E_in_t)); % Complex envelope of input electric field in frequency [V/m/Hz]
E_in_t = Fs * ifft(ifftshift(E_in_f));
case 'set spectral shape'
E_in_f = added_chirp.*((0.25.*exp(-(f/0.5e12).^2) + ((0.5 + double(~asymmetry).*0.5*cos(2*pi*(1/150e9)*f)).*exp(-((f-(1.5e12 - double(asymmetry).*0.6e12))/0.15e12).^2) + (0.5 + 0.5*cos(2*pi*(1/150e9)*f)).*exp(-((f+1.5e12)/0.15e12).^2))).*1e-8.*exp(1j*2*pi*f*(max_t)));
E_in_t = Fs * ifft(ifftshift(E_in_f));
end
E_in_envelope_t = abs(E_in_t); % Envelope of input electric field in time [V/m]
E_in_envelope_f = 1/Fs * fftshift(fft(E_in_envelope_t)); % Envelope of input electric field in frequency [V/m/Hz]
E_in_unchirped_t = Fs * ifft(ifftshift(exp(1j*2*pi*f*max_t).*abs(E_in_f))); % Unchirped input electric field in time [V/m]
c1 = 2*pi*600*(1e-12).^2;
c2 = 2*pi*2*(1e-12).^4;
c3 = 1e12;
c4 = c1*c3;
c5 = 1.4e12;
c7 = 1.3*c5;
c8 = -c1*c7^2*pi^2/8;
filter_phases_wihtout_chirp = {@(f) 1.6065*c1/2.*f.^2 ...
@(f) c8*(log(abs(f-c7*pi/2))+log(abs(f+c7*pi/2)))...
};
N_filters = length(filter_phases_wihtout_chirp);
set(0, 'DefaultLineLineWidth',2)
set(0, 'DefaultAxesColorOrder',[223 0 0]/255)
set(0, 'DefaultAxesFontSize',20)
set(0, 'DefaultFigureRenderer', 'zbuffer');
set(0, 'DefaultFigureWindowStyle', 'normal');
set(0, 'DefaultAxesUnits','pixels')
N_columns = 3;
fig_1_handle = figure('Position',[100 100 550*N_columns 400*(N_filters+1)]);
colors =[255 0 0;
0 203 0;
0 173 255]./255;
%% First row plots
fig1_subplot_handles = zeros(N_filters+1, N_columns);
fig1_subplot_handles(1,1) = subplot(N_filters+1,N_columns,1);
plot(t*1e12,abs(E_in_t)/1e3, 'Color', colors(1,:))
xlabel('Time [ps]'), ylabel('Amplitude [kV/m]')
xlim([-1000 350])
ylim([-0.1 1.05])
fig1_subplot_handles(1,2) = subplot(N_filters+1,N_columns,2);
plot(f/1e9,abs(E_in_f)*1e9, 'Color', colors(1,:))
xlabel('Envelope Frequency [GHz]'), ylabel('Magnitude [nV/m/Hz]')
safe_range_of_freq = [-1 1].*1.71e-9/(1.6065*c1/(2*pi));
xlim(safe_range_of_freq/1e9)
set(gca,'Xtick',[-1000 0 1000])
ylim([0 11.019])
fig1_subplot_handles(1,3) = subplot(N_filters+1,N_columns,3);
[~,T,F,P] = spectrogram(abs(E_in_f)*1e3, floor(length(E_in_f)*0.0512),...
floor(length(E_in_f)*0.0500), linspace(0,12e-12,201), 1/df);
design_F = F-Fs/2;
surf(T/1e-12, design_F/1e9, P.', 'edgecolor','none')
colormap hot
view(90,-90)
xlabel 'Freq. of Spectrum [ps]', ylabel 'Envelope Frequency [GHz]'
ylabel(colorbar,'Spectral Density [mV^2/m^2/Hz]','FontSize',15)
axis tight
ylim(safe_range_of_freq/1e9)
set(gca,'Ytick',[-1000 0 1000])
set(gca, 'Xtick',[0 12])
hold on
P_threshold = 0.001;
above_P_threshold = P_threshold.*max(max(P)) < P;
design_effective_bandwidth = zeros(size(F));
for F_index = 1:length(F)
for T_index = length(T):-1:1
if above_P_threshold(T_index, F_index)
design_effective_bandwidth(F_index) = T(T_index);
break
end
end
end
design_delta_design_F_total = 0.5./design_effective_bandwidth;
design_PD_BW = 8e9; % Photodetector bandwidth in Hz
design_ADC_BW = 8e9; % ADC Nyquist bandwidth in Hz
design_filter_GDD_design_F_DFT = 1./(pi*design_delta_design_F_total.^2);
design_filter_GDD_design_F_PD = 0.35./(2*pi*design_PD_BW*design_delta_design_F_total);
design_filter_GDD_design_F_ADC = 0.5./(2*pi*design_ADC_BW*design_delta_design_F_total);
design_filter_GDD_design_F = max([design_filter_GDD_design_F_DFT; design_filter_GDD_design_F_PD; design_filter_GDD_design_F_ADC]);
design_dF = mean(diff(design_F));
shifted_design_filter_GD_design_F = cumsum(design_filter_GDD_design_F).*(2*pi*design_dF);
design_filter_GD_design_F = shifted_design_filter_GD_design_F - shifted_design_filter_GD_design_F(value_finder(design_F,0)); % Just to force zero freq. GD to zero
design_filter_GD_f = interp1(design_F, design_filter_GD_design_F, f, 'linear', 'extrap');
chirp_from_filtered_E_in_design_F = zeros(size(F));
for F_index = 1:length(F)
filter = ((design_F(F_index) - 0.5*design_dF) < f) & (f < (design_F(F_index) + 0.5*design_dF));
filtered_E_in_t = Fs * ifft(ifftshift(E_in_f.*filter));
envelope_max_indices = find(abs(filtered_E_in_t) == max(abs(filtered_E_in_t)));
chirp_from_filtered_E_in_design_F(F_index) = -t(round(mean(envelope_max_indices)));
end
chirp_from_filtered_E_in_f = interp1(design_F, chirp_from_filtered_E_in_design_F, f, 'linear', 'extrap');
chirp_phase_from_filtered_E_in_f = 2*pi*df.*cumsum(chirp_from_filtered_E_in_f);
design_filter_GD_f_chirp_corrected = design_filter_GD_f - chirp_from_filtered_E_in_f;
design_filter_phase_f = 2*pi*df.*cumsum(design_filter_GD_f);
% These are just to show that other methods doesn't work, even Hilbert
% filtering gives instantenous frequency but not the chirp
% normalized_E_in_f = E_in_f./abs(E_in_f);
% normalized_E_in_f_middle = (normalized_E_in_f(2:end) + normalized_E_in_f(1:(end-1)))/2;
% chirp_from_normalized_E_in_f = abs((diff(normalized_E_in_f)/df)./(1j*2*pi*normalized_E_in_f_middle));
% smoothed_chirp_from_normalized_E_in_f = ideal_moving_average(chirp_from_normalized_E_in_f, round(design_df/df));
% chirp_from_angle_E_in_f = diff(angle(E_in_f))/(2*pi*df);
% smoothed_chirp_from_angle_E_in_f = ideal_moving_average(chirp_from_angle_E_in_f, round(design_df/df));
switch 'Design'
case 'Design'
filter_phases_wihtout_chirp{2} = @(f) design_filter_phase_f.*f.^0;
% For testing purposes you can uncomment the following line to show the designed effective bandwidth
% plot(design_effective_bandwidth/1e-12, design_F/1e9, '-.', 'Color', [255 53 120]/255) %plotting design effective bandwidth
case 'Do not design'
end
switch 'Unchirp'
case 'Unchirp'
filter_phases = cell(1,N_filters);
for filter_index = 1 : N_filters
filter_phases{filter_index} = @(f) filter_phases_wihtout_chirp{filter_index}(f) - chirp_phase_from_filtered_E_in_f.*f.^0;
end
case 'Do not unchirp'
filter_phases = filter_phases_wihtout_chirp;
end
fig_2_handle = figure('Position',[100 100 550*2 400*N_filters]);
fig2_subplot_handles = zeros(N_filters, 2);
%% Second and third row plots
for filter_index = 1 : N_filters
filter_phase_f = filter_phases{filter_index}(f);
filter_GD_f = diff(filter_phase_f)./(2*pi*df); % Filter group delay [s]
filter_GD_f_without_chirp = diff(filter_phases_wihtout_chirp{filter_index}(f))./(2*pi*df);
filter_GDD_f_without_chirp = diff(filter_GD_f_without_chirp)./(2*pi*df); % Filter group delay dispersion [s^2]
filter_f = exp(1j*filter_phase_f); % Complex filter: down-converted filter
E_out_f = filter_f.*E_in_f; % Complex envelope of output electric field in frequency [V/m/Hz]
E_out_t = Fs * ifft(ifftshift(E_out_f)); % Complex envelope of output electric field in time [V/m]
E_out_envelope_t = abs(E_out_t); % Envelope of output electric field in time [V/m]
E_out_envelope_f = 1/Fs * fftshift(fft(E_out_envelope_t)); % Envelope of output electric field in frequency [V/m/Hz]
conversion_factor = c*3.5*8.854e-12/2*(100e-6)^2*1*100; % Conversion equation: (c*n*e0/2*(abs(E_t))^2)*A*r*G [A: area, r: responsivity, G: gain]
i_out_envelope_t = conversion_factor*(abs(E_out_t)).^2; % Envelope of output photocurrent in time [A]
i_out_envelope_f = 1/Fs * fftshift(fft(i_out_envelope_t)); % Envelope of output photocurrent in frequency [A/Hz]
switch filter_index
case 1
PD_BW = 10.5e9; % Photodetector bandwidth in Hz
ADC_BW = 10.5e9; % ADC Nyquist bandwidth in Hz
case 2
PD_BW = 8e9; % Photodetector bandwidth in Hz
ADC_BW = 8e9; % ADC Nyquist bandwidth in Hz
end
Aquisition_BW = min(PD_BW, ADC_BW); % Minimum of all electrical bandwidth limitations
delta_f_DFT = sqrt(1./(pi*abs(filter_GDD_f_without_chirp))); % Spectral resolution limit imposed by Dispersive Fourier Transform
delta_f_PD = 0.35./(2*pi*PD_BW*abs(filter_GDD_f_without_chirp)); % Spectral resolution limit imposed by Photodetector bandwidth
delta_f_ADC = 0.5./(2*pi*ADC_BW*abs(filter_GDD_f_without_chirp)); % Spectral resolution limit imposed by ADC Nyquist bandwidth
delta_f_total = max([delta_f_DFT; delta_f_PD; delta_f_ADC]); % Overall spectral resolution limit
Largest_freq_of_spectrum = 0.5./delta_f_total; % Effective bandwidth of spectrum's spectrum
figure(fig_2_handle)
fig2_subplot_handles(filter_index, 1) = subplot(N_filters,2,2*(filter_index-1)+1);
plot(f_GDD./1e9, delta_f_DFT/1e9, '-', 'Color', [0.85 0.325 0.098])
hold on
plot(f_GDD./1e9, delta_f_PD/1e9, '-', 'Color', [0.929 0.694 0.125])
plot(f_GDD./1e9, delta_f_ADC/1e9, '-', 'Color', [0.494 0.184 0.556])
plot(f_GDD./1e9, delta_f_total/1e9, '--', 'Color', colors(filter_index+1,:))
xlabel('Envelope Frequency [GHz]'), ylabel('Resolution [GHz]')
xlim(safe_range_of_freq/1e9)
ylim([0 350])
legend_resolution_handle = legend('DFT', 'PD', 'ADC', 'Total');
set(legend_resolution_handle, 'Location', 'NorthEast')
set(legend_resolution_handle, 'Box', 'on')
set(legend_resolution_handle, 'FontSize', 15)
fig2_subplot_handles(filter_index, 2) = subplot(N_filters,2,2*(filter_index-1)+2);
within_safe_range_of_freq = (safe_range_of_freq(1)<f) & (f<safe_range_of_freq(2));
everyother = 1; % Determines the distance between consecuitive points that the errorbar is plotted for
magnification_factor = 10; % Magnification factor to visualize the spectral resolution better
within_safe_range_of_freq_everyother = within_safe_range_of_freq & (mod(1:N,everyother) == 0);
errorbar_handle = herrorbar((f_GD(within_safe_range_of_freq_everyother(1:end-1))+f_GD(within_safe_range_of_freq_everyother(2:end)))/2/1e9,...
(filter_GD_f(within_safe_range_of_freq_everyother(1:end-1))+filter_GD_f(within_safe_range_of_freq_everyother(2:end)))/2*1e9,...
(magnification_factor*delta_f_total(within_safe_range_of_freq_everyother(2:end-1))/2)/1e9);
set(errorbar_handle(1), 'Color', colors(filter_index+1,:))
set(errorbar_handle(2), 'Color', colors(filter_index+1,:).^0.2)
xlabel('Envelope Frequency [GHz]'), ylabel('Group Delay [ns]')
xlim(safe_range_of_freq/1e9)
ylim([-3 3])
set(gca, 'XTick', [-1000 0 1000])
figure(fig_1_handle)
fig1_subplot_handles(filter_index+1,1) = subplot(N_filters+1,N_columns,N_columns*(filter_index)+1);
plot(f_GD/1e9, filter_GD_f_without_chirp/1e-9, 'Color', [255 53 120]/255)
hold on
plot(f/1e9, chirp_from_filtered_E_in_f/1e-9, 'Color', [255 208 0]/255)
plot(f_GD/1e9, filter_GD_f/1e-9, 'Color', colors(filter_index+1,:))
xlabel('Envelope Frequency [GHz]'), ylabel('Group Delay [ns]')
xlim(safe_range_of_freq/1e9)
ylim([-3 3])
set(gca, 'XTick', [-1000 0 1000])
legend_design_handle = legend('Design', 'Chirp', 'Total');
set(legend_design_handle, 'Location', 'SouthEast')
set(legend_design_handle, 'Box', 'on')
set(legend_design_handle, 'FontSize', 15)
fig1_subplot_handles(filter_index+1,2) = subplot(N_filters+1,N_columns,N_columns*(filter_index)+2);
plot(t*1e9, abs(E_out_envelope_t), 'Color', colors(filter_index+1,:))
xlabel('Time [ns]'), ylabel('Amplitude [V/m]')
xlim([-1.71 1.71])
ylim([0 450])
fig1_subplot_handles(filter_index+1,3) = subplot(N_filters+1,N_columns,N_columns*(filter_index)+3);
[S,F,T,P] = spectrogram(E_out_envelope_t*1e3, floor(length(E_out_envelope_t)*0.0512),...
floor(length(E_out_envelope_t)*0.0500), linspace(0,20e9,201), Fs);
surf(F/1e9,(T-max_t)*1e9,P.','edgecolor','none')
colormap hot
view(90,-90)
xlabel 'Frequency [GHz]', ylabel 'Time [ns]'
ylabel(colorbar,'Spectral Density [mV^2/m^2/Hz]','FontSize',15)
axis tight
ylim([-1.71 1.71])
set(gca, 'Xtick',[0 20])
hold on
input_spectrum_show_range = 0.99*get(fig1_subplot_handles(1,2),'XLim');
input_spectrum_GD_starts = filter_GD_f_without_chirp(value_finder(f_GD/1e9, input_spectrum_show_range(1)));
input_spectrum_GD_ends = filter_GD_f_without_chirp(value_finder(f_GD/1e9, input_spectrum_show_range(2)));
plot([0 Aquisition_BW Aquisition_BW 0]/1e9, [-input_spectrum_GD_ends(end) -input_spectrum_GD_ends(end) ...
-input_spectrum_GD_starts(1) -input_spectrum_GD_starts(1)]/1e-9,'-.', 'Color', colors(filter_index+1,:))
axes(fig1_subplot_handles(1,3)) %#ok<LAXES> % This plots on the first row spectrogram
input_spectrum_GDD_start_indices = value_finder(f_GDD/1e9, input_spectrum_show_range(1));
input_spectrum_GDD_end_indices = value_finder(f_GDD/1e9, input_spectrum_show_range(2));
rectangle_indices = [input_spectrum_GDD_start_indices(1),...
input_spectrum_GDD_start_indices(1):input_spectrum_GDD_end_indices(end),...
input_spectrum_GDD_end_indices(end)];
plot([0, Largest_freq_of_spectrum(input_spectrum_GDD_start_indices(1):input_spectrum_GDD_end_indices(end)), 0]/1e-12, f_GDD(rectangle_indices)/1e9,'-.', 'Color', colors(filter_index+1,:))
end
desired_Position = get(fig1_subplot_handles(1,1), 'Position');
for row = 1 : (N_filters+1)
current_Position = get(fig1_subplot_handles(row,3), 'Position');
set(fig1_subplot_handles(row,3), 'Position',[current_Position(1:2), desired_Position(3), current_Position(4)]);
end
% Change the colormap
load('modified_hot_colormap.mat')
colormap(fig_1_handle, modified_hot_colormap)
%% Panel letters and arrows
figure(fig_1_handle)
for row = 1 : (N_filters+1)
for column = 1 : N_columns
current_Position = get(fig1_subplot_handles(row, column), 'Position');
annotation('textbox', 'Units','pixels', 'Position',[current_Position(1)-110, current_Position(2)+115, 200, 200],...
'String', ['(', char(96 + N_columns*(row-1) + column), ')'], 'FontSize',20, 'FontWeight','bold', 'FontName','calibri', 'LineStyle','none');
end
end
figure(fig_2_handle)
for row = 1 : N_filters
for column = 1 : 2
current_Position = get(fig2_subplot_handles(row, column), 'Position');
annotation('textbox', 'Units','pixels', 'Position',[current_Position(1)-110, current_Position(2)+115, 200, 200],...
'String', ['(', char(96 + 2*(row-1) + column), ')'], 'FontSize',20, 'FontWeight','bold', 'FontName','calibri', 'LineStyle','none');
end
switch row
case 1
arrow_tips_distance = 91; % in pixels
case 2
arrow_tips_distance = 142; % in pixels
end
annotation('arrow', 'Units','pixels', 'Position',[current_Position(1)+(current_Position(3)/2)-arrow_tips_distance, current_Position(2)+(current_Position(4)/2), 60, 0]);
annotation('arrow', 'Units','pixels', 'Position',[current_Position(1)+(current_Position(3)/2)+arrow_tips_distance, current_Position(2)+(current_Position(4)/2), -60, 0]);
annotation('textbox', 'Units','pixels', 'Position',[current_Position(1)+(current_Position(3)/2)-arrow_tips_distance-20, current_Position(2)+(current_Position(4)/2)-20, 100, 100],...
'String', [num2str(magnification_factor), ' \times Resolution'], 'FontSize',15, 'FontWeight','bold', 'FontName','calibri', 'LineStyle','none', 'HorizontalAlign','right');
end