-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathagent.py
339 lines (270 loc) · 15.2 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
import torch.nn.functional as F
from collections import deque
from parlai.core.agents import Agent
from model.transformer_model import TransformerModel
from model.text import BPEVocab
from model.utils import pad_sequence
from model.postprocessing import ngram_replaser, ReplyChecker, detokenize, syntax_fix
from model.retrieval import RetrievalBot, DIALOG_SIZE
from model.sentiment import pick_emoji, clean_emoji
from config import get_model_config
import random
class TransformerAgent(Agent):
@staticmethod
def add_cmdline_args(argparser):
agent_args = argparser.add_argument_group('Agent parameters')
agent_args.add_argument('-gpu', '--gpu', type=int, default=-1,
help='which GPU to use')
agent_args.add_argument('--no-cuda', type=bool, default=False,
help='disable GPUs even if available. otherwise, will use GPUs if '
'available on the device.')
agent_args.add_argument('--rank_candidates', type=bool, default=False,
help='Whether the model should parse candidates for ranking.')
agent_args.add_argument('--sample', type=bool, default=False,
help='Sampling of beam from beam search')
agent_args.add_argument('--wild_mode', type=bool, default=False,
help='')
agent_args.add_argument('--replace_repeat', type=bool, default=True,
help='')
agent_args.add_argument('--replace_ngram', type=bool, default=True,
help='')
agent_args.add_argument('--detokenize', type=bool, default=True,
help='')
agent_args.add_argument('--emoji_prob', type=float, default=0.5,
help='')
agent_args.add_argument('--ngram_size', type=int, default=3,
help='')
agent_args.add_argument('--add_questions', type=float, default=0.3,
help='')
agent_args.add_argument('--clean_emoji', type=bool, default=True,
help='')
agent_args.add_argument('--check_grammar', type=bool, default=True,
help='')
agent_args.add_argument('--correct_generative', type=bool, default=True,
help='')
agent_args.add_argument('--split_into_sentences', type=bool, default=True,
help='')
agent_args.add_argument('--max_seq_len', type=int, default=128,
help='')
agent_args.add_argument('--beam_size', type=int, default=1,
help='')
agent_args.add_argument('--diversity_coef', type=float, default=0,
help='')
agent_args.add_argument('--diversity_groups', type=int, default=1,
help='')
agent_args.add_argument('--annealing_topk', type=float, default=None,
help='')
agent_args.add_argument('--annealing', type=float, default=0.0,
help='')
agent_args.add_argument('--length_penalty', type=float, default=0.6,
help='')
return argparser
def __init__(self, opt, shared=None):
super(TransformerAgent, self).__init__(opt, shared)
self.use_cuda = not self.opt.get('no_cuda') and torch.cuda.is_available()
if self.use_cuda:
torch.cuda.set_device(self.opt['gpu'])
torch.set_grad_enabled(False)
model_config = get_model_config()
self.vocab = BPEVocab.from_files(model_config.bpe_vocab_path, model_config.bpe_codes_path)
self.reply_checker = ReplyChecker(correct_generative=self.opt['correct_generative'],
split_into_sentences=self.opt['split_into_sentences'])
self.replace_repeat = self.opt['replace_repeat']
self.replace_ngram = self.opt['replace_ngram']
self.ngram_size = self.opt['ngram_size']
self.detokenize = self.opt['detokenize']
self.emoji_prob = self.opt['emoji_prob']
self.add_questions = self.opt['add_questions']
self.beam_size = self.opt['beam_size']
self.clean_emoji = self.opt['clean_emoji']
self.check_grammar = self.opt['check_grammar']
# 'max_seq_len': 128,
# 'beam_size': 1,
# 'diversity_coef': 0,
# 'diversity_groups': 1,
# 'annealing_topk': None,
# 'annealing': 0,
# 'length_penalty': 0.6,
if self.opt['annealing_topk'] is not None:
assert self.opt['annealing_topk'] > self.opt['beam_size']
assert self.opt['diversity_coef'] >= 0
assert self.opt['beam_size'] % self.opt['diversity_groups'] == 0
if shared is None:
self.model = TransformerModel(n_layers=model_config.n_layers,
n_embeddings=len(self.vocab),
n_pos_embeddings=model_config.n_pos_embeddings,
embeddings_size=model_config.embeddings_size,
padding_idx=self.vocab.pad_id,
n_heads=model_config.n_heads,
dropout=model_config.dropout,
embed_dropout=model_config.embed_dropout,
attn_dropout=model_config.attn_dropout,
ff_dropout=model_config.ff_dropout,
bos_id=self.vocab.bos_id,
eos_id=self.vocab.eos_id,
max_seq_len=self.opt['max_seq_len'],
beam_size=self.opt['beam_size'],
length_penalty=self.opt['length_penalty'],
n_segments=model_config.n_segments,
sample=self.opt['sample'],
annealing_topk=self.opt['annealing_topk'],
annealing=self.opt['annealing'],
diversity_coef=self.opt['diversity_coef'],
diversity_groups=self.opt['diversity_groups'])
self.retrieval_bot = RetrievalBot()
state_dict = torch.load(model_config.checkpoint_path, map_location=lambda storage, loc: storage)
if 'model' in state_dict:
state_dict = state_dict['model']
self.model.load_state_dict(state_dict)
print('Weights loaded from {}'.format(model_config.checkpoint_path))
if self.use_cuda:
self.model = self.model.cuda()
self.model.eval()
else:
self.model = shared['model']
self.retrieval_bot = shared['retrieval']
self.reset()
def _preprocess_text(self, text):
if self.clean_emoji:
text = clean_emoji(text)
if self.check_grammar:
text = syntax_fix(text).lower()
return text
def _parse(self, text):
# todo: fix grammar mistakes?
persona_info = []
dialog = []
for subtext in text.split('\n'):
subtext = subtext.strip()
if self.opt['wild_mode'] and len(self.history['info']) == 0 and len(self.history['dialog']) == 0:
subtext = 'your persona: ' + subtext
if subtext.startswith('your persona:'):
subtext = subtext.replace('your persona:', '').strip()
subtext = self._preprocess_text(subtext).strip()
persona_info.append(subtext)
else:
subtext = self._preprocess_text(subtext).strip()
dialog.append(subtext)
return persona_info, dialog
def observe(self, observation):
if self.episode_done:
self.reset()
if 'text' in observation:
text = observation['text']
info, dialog = self._parse(text)
if info:
self.history['str_info'] = ' '.join(info)
self.history['str_dialog'].extend(dialog)
info = sum([self.vocab.string2ids(i) for i in info], [])
self.history['info'].extend(info)
for i, d in enumerate(dialog, 1):
d = self.vocab.string2ids(d)
if i % 2 == 1:
d = [self.vocab.talker1_bos_id] + d + [self.vocab.talker1_eos_id]
else:
d = [self.vocab.talker2_bos_id] + d + [self.vocab.talker2_eos_id]
self.history['dialog'].extend(d)
observation['agent'] = self
self.episode_done = observation['episode_done']
self.observation = observation
return observation
def act(self):
return self.batch_act([self.observation])[0]
def _postprocess_text(self, reply, agent):
str_reply = self.vocab.ids2string(reply)
if self.replace_repeat:
str_reply = agent.reply_checker.check_reply(str_reply,
agent.history['str_dialog'][-1],
agent.history['str_info'])
if self.beam_size > 1 and random.uniform(0, 1) < self.add_questions and '?' not in str_reply:
question = self.retrieval_bot.generate_question(list(agent.history['str_dialog']),
agent.history['str_info'])
if question is not None and question not in str_reply:
str_reply = ' '.join([str_reply, question])
if self.replace_ngram:
str_reply = ngram_replaser(agent.history['str_info'], str_reply, n=self.ngram_size)
reply = self.vocab.string2ids(str_reply)
if self.detokenize:
str_reply = detokenize(str_reply)
if random.uniform(0, 1) < self.emoji_prob:
str_reply = ' '.join([str_reply, pick_emoji(str_reply)])
return str_reply, reply
def batch_act(self, observations):
def is_valid_history(history):
return len(history['dialog'])
def to_tensor(string):
ids = [self.vocab.bos_id] + self.vocab.string2ids(string) + [self.vocab.eos_id]
return torch.tensor(ids, dtype=torch.long)
batch_reply = [{'id': self.getID(), 'text': '', 'text_candidates': []} for _ in range(len(observations))]
valid_ids = [i for i, obs in enumerate(observations) if is_valid_history(obs['agent'].history)]
batch_size = len(valid_ids)
if batch_size == 0:
return batch_reply
try:
valid_observations = [observations[i] for i in valid_ids]
infos = [obs['agent'].history['info'][:self.model.n_pos_embeddings-3] for obs in valid_observations]
infos = [([self.vocab.info_bos_id] + ifo + [self.vocab.info_eos_id] if len(ifo) else ifo) for ifo in infos]
dialogs = [list(obs['agent'].history['dialog'])[-self.model.n_pos_embeddings+1:] for obs in valid_observations]
contexts = []
if max(map(len, infos)) > 0:
infos = [torch.tensor(i, dtype=torch.long) for i in infos]
infos = pad_sequence(infos, batch_first=True, padding_value=self.model.padding_idx)
if self.use_cuda:
infos = infos.cuda()
contexts.append(infos)
if max(map(len, dialogs)) > 0:
dialogs = [torch.tensor(d, dtype=torch.long) for d in dialogs]
dialogs = pad_sequence(dialogs, batch_first=True, padding_value=self.model.padding_idx)
if self.use_cuda:
dialogs = dialogs.cuda()
contexts.append(dialogs)
enc_contexts = [self.model.encode(c) for c in contexts]
pred_texts = self.model.beam_search(enc_contexts)
for i in range(batch_size):
pred_text_str, pred_text = self._postprocess_text(pred_texts[i], valid_observations[i]['agent'])
valid_observations[i]['agent'].history['dialog'].extend([self.vocab.talker2_bos_id] +
pred_text +
[self.vocab.talker2_eos_id])
batch_reply[valid_ids[i]]['text'] = pred_text_str
batch_reply[valid_ids[i]]['episode_done'] = valid_observations[i]['agent'].episode_done
if self.opt['rank_candidates']:
candidates = [list(obs.get('label_candidates', [])) for obs in valid_observations]
lens_candidates = [len(c) for c in candidates]
if max(lens_candidates) > 0:
candidates = [c + ['' for _ in range(max(lens_candidates) - len(c))] for c in candidates]
scores = [[] for _ in range(len(candidates))]
for i in range(max(lens_candidates)):
current_cands = [to_tensor(c[i])[:self.model.n_pos_embeddings-1] for c in candidates]
current_cands = pad_sequence(current_cands, batch_first=True, padding_value=self.model.padding_idx)
if self.use_cuda:
current_cands = current_cands.cuda()
logits = self.model.decode(current_cands[:, :-1], enc_contexts)
log_probas = F.log_softmax(logits, dim=-1)
log_probas = torch.gather(log_probas, -1, current_cands[:, 1:].unsqueeze(-1)).squeeze(-1)
log_probas.masked_fill_(current_cands[:, 1:].eq(self.model.padding_idx), 0)
current_lens = current_cands[:, 1:].ne(self.model.padding_idx).float().sum(dim=-1)
current_scores = log_probas.sum(dim=-1) / current_lens
for k, s in enumerate(current_scores):
if i < lens_candidates[k]:
scores[k].append(s.item())
ranked_ids = [sorted(range(len(s)), key=lambda k: s[k], reverse=True) for s in scores]
ranked_strings = [[c[i] for i in ids] for ids, c in zip(ranked_ids, candidates)]
for i in range(batch_size):
batch_reply[valid_ids[i]]['text_candidates'] = ranked_strings[i]
except Exception as e:
# raise e
print(e)
return batch_reply
def share(self):
shared = super(TransformerAgent, self).share()
shared['opt'] = self.opt
shared['model'] = self.model
shared['retrieval'] = self.retrieval_bot
return shared
def reset(self):
self.history = {'str_info': None, 'str_dialog': deque(DIALOG_SIZE * ['None'], maxlen=DIALOG_SIZE),
'info': [], 'dialog': deque(maxlen=self.model.n_pos_embeddings-1)}
self.episode_done = True
self.observation = None
self.reply_checker.clean()