
Practical frontend testing
Atte Keinänen

atte@metabase.com

Slides & extra material: 
http://tinyurl.com/frontendtesting

mailto:atte@metabase.com
http://tinyurl.com/frontendtesting

Briefly about myself

• I spent a year in San Francisco through
Startuplifers, an internship program of Aalto
University

• I’m a part of the core team of Metabase, a
SF-based startup developing an open source
tool for data exploration and visualization

• I sing in a mixed choir and I absolutely love
travelling (especially in Asia)

What do I mean with
”frontend testing”?

Making sure that the user of your app

• sees what you expect him to see

• is able to achieve his goals

• doesn’t feel that the app is too slow

describe("dashboards list", () => {
 it("should let you create a dashboard when there are no existing dashboards", async () => {
 // Initialize Redux store and navigate to dashboard list url
 const store = await createTestStore();
 store.pushPath("/dashboards")
 const app = mount(store.getAppContainer());

 // Wait for dashboards to load
 await store.waitForActions([FETCH_DASHBOARDS])

 // Trigger the creation modal by clicking the "Create a dashboard" button
 const newDashboardButton = app.find(".Button.Button--primary")
 click(newDashboardButton)
 const modal = app.find(CreateDashboardModal)
 expect(modal.length).toBe(1)

 // Set the input values
 setInputValue(modal.find('input[name="name"]'), "HelsinkiJS Demo Dashboard")
 setInputValue(modal.find('input[name="description"]'), "Frontend Testing Fun")
 clickButton(modal.find(".Button--primary"))

 // Should navigate to the newly created dashboard
 await store.waitForActions([BROWSER_HISTORY_PUSH, FETCH_DASHBOARD])
 expect(app.find(Dashboard).length).toBe(1)
 })
})

Using some techie jargon:

• Doing functional testing for verifying that user-
facing parts of your app behave as expected

• Doing performance testing for detecting
performance bottlenecks

Why should you write
frontend tests?

export const AlertAboveGoalToggle = (props) =>
 <AlertSettingToggle {...props} setting="alert_above_goal" />

export const AlertFirstOnlyToggle = (props) =>
 <AlertSettingToggle {...props} setting="alert_first_only" />

export const AlertSettingToggle = ({ alert, onAlertChange, title, trueText, falseText, setting }) =>
 <div className="mb4 pb2">
 <h3 className="text-dark mb1">{title}</h3>
 <Radio
 value={alert[setting]}
 onChange={(value) => onAlertChange({ ...alert, [setting]: value })}
 options={[{ name: trueText, value: true }, { name: falseText, value: false }]}
 />
 </div>

1. It improves your code quality

• It encourages you to write easy-to-understand modular code

2. It makes you more confident

• Makes you less anxious whether your app is
working as a whole or not

• Makes you push code to production more frequently

3. You spend less time trying to decipher source code

• Tests serve as an up-to-date documentation which is often faster
to digest than plain source code

How to start writing
frontend tests?

• Incrementally; trying to get from zero to 100%
test coverage tends to be unrealistic

• Focus on critical interaction paths; don’t aim to
cover everything

• A word of encouragement: the first test cases
might take a long time to write, but the more
tests you have, the easier it gets

One easy-to-adapt strategy that has worked
well for us has been writing a test case for

each new regression bug we encounter

Original bug report:

A fix to that bug contains a frontend test case:

Which parts of my codebase
should my tests cover?  

(this is more opinionated than the previous sections!)

• Consider rendering the whole app in your tests. 
It’s nicer to know that ”this whole dashboard list
page shows up correctly” than being only limited to
a single component inside that page.

• Consider using a real backend. 
Use fake API responses only when absolutely
necessary. If you use a real backend, your tests will
catch issues caused by changes in your API
endpoints.

You can cover these all with a single test case!

Obstacles you might encounter

• Tests are slow. We’ve had to spend a fair amount of
time optimizing the launch time of our test runner
and tests itself. For instance, we currently reuse a
same user login in every test.

• Tests are unstable. We had to rewrite our frontend
test infrastructure after we realized that our old
tests (based on Selenium) were failing too often.

Thanks!

Slides & a deep dive to  
technical implementation:

http://tinyurl.com/frontendtesting

http://tinyurl.com/frontendtesting

