Practical frontend testing

Atte Kelnanen
atte@metabase.com

Slides & extra material:

mailto:atte@metabase.com
http://tinyurl.com/frontendtesting

L "- L1 CRL RN ER

- Briefly about myself

e | spent a year in San Francisco through
Startupliters, an internship program of Aalto
University

e |'m a part of the core team of Metabase, a

SF-based startup developing an open source
tool for data exploration and visualization

e | sing in a mixed choir and | absolutely love
travelling (especially in Asia)

What do | mean with
“frontend testing”?

Making sure that the user of your app
* sees what you expect him to see
* |s able to achieve his goals

» doesn’t feel that the app is too slow

Dashboards Questions Pulses Data Reference

Dashboards =

e > =—

Put the charts and graphs you look at

frequently in a single, handy place.

Create a dashboard

describe(”dashboards list”, () => {
1t("should let you create a dashboard when there are no existing dashboards”, async () => {
// Initialize Redux store and navigate to dashboard list url
const store = await createTestStore();
store.pushPath("/dashboards™)
const app = mount(store.getAppContainer());

// Wait for dashboards to load
awalt store.waitForActions([FETCH_DASHBOARDS])

// Trigger the creation modal by clicking the "Create a dashboard” button
const newDashboardButton = app.find(”.Button.Button--primary")
click(newDashboardButton)

const modal = app.find(CreateDashboardModal)

expect(modal.length).toBe(1)

// Set the input values

setInputValue(modal.find(' 'input[name="name”]"'), "Helsinki1iJS Demo Dashboard”)
setInputValue(modal.find(' 'input[name="description”]"), "Frontend Testing Fun”)
clickButton(modal.find("”.Button—--primary”))

// Should navigate to the newly created dashboard
awalt store.waitForActions([BROWSER_HISTORY_PUSH, FETCH_DASHBOARD])

expect(app.find(Dashboard).length).toBe(1)

)
)

Using some techie jargon:

* Doing for verifying that user-
facing parts of your app behave as expected

* Doing for detecting
performance bottlenecks

Why should you write
frontend tests?

* |t encourages you to write easy-to-understand modular code

export const AlertAboveGoalToggle = (props) =>
<AlertSettingToggle {...props} setting="alert_above_goal" />

export const AlertFirstOnlyToggle = (props) =>
<AlertSettingToggle {...props} setting="alert_first_only" />

export const AlertSettingToggle = ({ alert, onAlertChange, title, trueText, falseText, setting }) =>
<div className="mb4 pb2">
<h3 className="text-dark mb1">{title}</h3>
<Radio
value={alert[setting]}
onChange={(value) => onAlertChange({ ...alert, [setting]: value })}
options={[{ name: trueText, value: true }, { name: falseText, value: false }]1}
/>
</div>

2. It makes you more confident

* Makes you less anxious whether your app Is

working as a whole or not

* Makes you push code to production more frequently

~ K

° All checks have passed

1 successful check

This branch has no conflicts with the base branch
Merging can be performed automatically.

Show all checks

Merge pull request a8 You can also open this in GitHub Desktop or view command line instructions.

 Jests serve as an up-to-date documentation which is often faster
to digest than plain source code

- frontend/test/alert/alert.integ.spec.js (8.883s)
Alerts
alert list for a guestion
as an admin
" should let you see all created alerts (1445ms)

should let you edit an alert (1438ms)
as a non—-admin / normal user
" should let you see your own alerts (1194ms)
" should let you see also other alerts where you are a recipient (740ms)
should let you unsubscribe from both your own and others' alerts (763ms)

How to start writing
frontend tests?

° trying to get from zero to 100%
test coverage tends to be unrealistic

° don't aim to
cover everything

A word of encouragement: the first test cases
might take a long time to write, but the more
tests you have, the easier It gets

One easy-to-adapt strategy that has worked
well for us has been writing a test case for
each new regression bug we encounter

Original bug report:

The Action menu doesn't know when a metric has been Sl Newissue
retired #6002

mazameli opened this issue on Sep 19 - 0 comments

- mazameli commented on Sep 19 « edited ~ Member +(&) 4 Assignees

attekei

Labels

This is on Chrome on our stats instance.

Haven't tested to see if this is also the case with retired segments, but if | open up a table that has
retired metrics in it, they're still listed in the action menu, and | can run them: Actions

New question save R BH W _
- Metrics & Segments

Matches) . Prioritylp3

Games v B p— aw data

A fix to that bug contains a frontend test case:

Don't show retired metrics in query builder action widget Edit
#0006

el attekei merged 4 commits into master from issue-6002 on Sep 25

(59 Conversation 3 “C-Commits 4 Files changed 3 +85 -46 HEEN

:” attekei commented on Sep 19 » edited ~ Member +(= #° Reviewers

L 4

:I: salsakran

TODO :
- mazameli

¥/ Integration test case
Assignees

Which parts of my codebase
should my tests cover?

(this is more opinionated than the previous sections!)

It’s nicer to know that "this whole dashboard list
page shows up correctly” than being only limited to
a single component inside that page.

Use fake API responses only when absolutely
necessary. If you use a real backend, your tests will

catch Issues caused by changes in your AP
endpoints.

Dashboards Questions Pulses Data Reference

Dashboards =

e > =—

Put the charts and graphs you look at

frequently in a single, handy place.

Create a dashboard

You can cover these all with a single test case!

React component hierarchy Redux actions Backend

<Routes>

<DashboardListPage>

createDashboard() POST /dashboard

<CreateDashboardModal > |

fetchDashboards() GET /dashboard/list

<EmptyDashboardList> I

Redux state

{ path: "/dashboards”, dashboards: [] }

Browser history

User

current & previous paths of current tab navigateloPath()

Obstacles you might encounter

We’ve had to spend a fair amount of
time optimizing the launch time of our test runner
and tests itself. For instance, we currently reuse a
same user login in every test.

We had to rewrite our frontend
test infrastructure after we realized that our old
tests (based on Selenium) were failing too often.

Thanks!

Slides & a deep dive to
technical implementation:

http://tinyurl.com/frontendtesting

http://tinyurl.com/frontendtesting

