-
Notifications
You must be signed in to change notification settings - Fork 11
/
finetune.py
200 lines (165 loc) · 10.6 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
import json
import time
import math
import logging
import sys
import os
import torch
import torch.nn as nn
import numpy as np
import random
from torchsummary import summary
from torch.autograd import Variable
from trainer.asr.joint_trainer import JointTrainer
from utils.data import Vocab
from utils.data_loader import SpectrogramDataset, LogFBankDataset, AudioDataLoader, BucketingSampler
from utils.functions import load_meta_model, load_joint_model, init_transformer_model, init_optimizer, compute_num_params, generate_labels
parser = argparse.ArgumentParser(description='Transformer ASR meta transfer fine-tuning')
parser.add_argument('--model', default='TRFS', type=str, help="")
parser.add_argument('--name', default='model', help="Name of the model for saving")
parser.add_argument('--train-manifest-list', nargs='+', type=str)
parser.add_argument('--valid-manifest-list', nargs='+', type=str)
parser.add_argument('--test-manifest-list', nargs='+', type=str)
parser.add_argument('--train-partition-list', nargs='+', type=float, default=None)
parser.add_argument('--training-mode', default='meta')
parser.add_argument('--sample-rate', default=22050, type=int, help='Sample rate')
parser.add_argument('--k-train', default=20, type=int, help='Batch size for training')
parser.add_argument('--num-workers', default=8, type=int, help='Number of workers used in data-loading')
parser.add_argument('--labels-path', default='labels.json', help='Contains all characters for transcription')
parser.add_argument('--label-smoothing', default=0.0, type=float, help='Label smoothing')
parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram in seconds')
parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram in seconds')
parser.add_argument('--window', default='hamming', help='Window type for spectrogram generation')
parser.add_argument('--epochs', default=1000, type=int, help='Number of training epochs')
parser.add_argument('--cuda', dest='cuda', action='store_true', help='Use cuda to train model')
parser.add_argument('--early-stop', default="loss,10", type=str, help='Early stop (loss,10) or (cer,10)')
parser.add_argument('--save-every', default=5, type=int, help='Save model every certain number of epochs')
parser.add_argument('--save-folder', default='models/', help='Location to save epoch models')
parser.add_argument('--emb-trg-sharing', action='store_true', help='Share embedding weight source and target')
parser.add_argument('--feat_extractor', default='vgg_cnn', type=str, help='emb_cnn or vgg_cnn or none')
parser.add_argument('--feat', type=str, default='spectrogram', help='spectrogram or logfbank')
parser.add_argument('--verbose', action='store_true', help='Verbose')
parser.add_argument('--continue-from', default='', type=str, help='Continue from checkpoint model')
parser.add_argument('--augment', dest='augment', action='store_true', help='Use random tempo and gain perturbations.')
parser.add_argument('--noise-dir', default=None,
help='Directory to inject noise into audio. If default, noise Inject not added')
parser.add_argument('--noise-prob', default=0.4, help='Probability of noise being added per sample')
parser.add_argument('--noise-min', default=0.0,
help='Minimum noise level to sample from. (1.0 means all noise, not original signal)', type=float)
parser.add_argument('--noise-max', default=0.5,
help='Maximum noise levels to sample from. Maximum 1.0', type=float)
# Transformer
parser.add_argument('--num-enc-layers', default=3, type=int, help='Number of layers')
parser.add_argument('--num-dec-layers', default=3, type=int, help='Number of layers')
parser.add_argument('--num-heads', default=5, type=int, help='Number of heads')
parser.add_argument('--dim-model', default=512, type=int, help='Model dimension')
parser.add_argument('--dim-key', default=64, type=int, help='Key dimension')
parser.add_argument('--dim-value', default=64, type=int, help='Value dimension')
parser.add_argument('--dim-input', default=161, type=int, help='Input dimension')
parser.add_argument('--dim-inner', default=1024, type=int, help='Inner dimension')
parser.add_argument('--dim-emb', default=512, type=int, help='Embedding dimension')
parser.add_argument('--src-max-len', default=2500, type=int, help='Source max length')
parser.add_argument('--tgt-max-len', default=1000, type=int, help='Target max length')
# optimizer
parser.add_argument('--lr', default=1e-4, type=float, help='lr')
parser.add_argument('--evaluate-every', default=1000, type=int, help='evaluate every')
# Noam optimizer
parser.add_argument('--warmup', default=4000, type=int, help='Warmup')
parser.add_argument('--min-lr', default=1e-5, type=float, help='min lr')
parser.add_argument('--k-lr', default=1, type=float, help='factor lr')
# Decoder search
parser.add_argument('--beam-search', action='store_true', help='Beam search')
parser.add_argument('--beam-width', default=3, type=int, help='Beam size')
parser.add_argument('--beam-nbest', default=5, type=int, help='Number of best sequences')
parser.add_argument('--lm-rescoring', action='store_true', help='Rescore using LM')
parser.add_argument('--lm-path', type=str, default="lm_model.pt", help="Path to LM model")
parser.add_argument('--lm-weight', default=0.1, type=float, help='LM weight')
parser.add_argument('--c-weight', default=0.1, type=float, help='Word count weight')
parser.add_argument('--prob-weight', default=1.0, type=float, help='Probability E2E weight')
# loss
parser.add_argument('--loss', type=str, default='ce', help='ce or ctc')
parser.add_argument('--clip', action='store_true', help="clip")
parser.add_argument('--max-norm', default=400, type=float, help="max norm for clipping")
parser.add_argument('--is-factorized', action='store_true', help="is factorized. experimental")
parser.add_argument('--r', default=100, type=int, help='rank')
parser.add_argument('--dropout', default=0.1, type=float, help='Dropout')
# input
parser.add_argument('--input_type', type=str, default='char', help='char or bpe or ipa')
# Post-training factorization
parser.add_argument('--rank', default=10, type=float, help="rank")
parser.add_argument('--factorize', action='store_true', help='factorize')
# Training config
parser.add_argument('--copy-grad', action='store_true', help="copy grad for MAML") # Useless
parser.add_argument('--cpu-state-dict', action='store_true', help='store state dict in cpu')
parser.add_argument('--opt_name', type=str, default='adam', help='adam or sgd')
# Finetune
parser.add_argument('--finetune', action='store_true', help="")
torch.manual_seed(123456)
torch.cuda.manual_seed_all(123456)
np.random.seed(123456)
random.seed(123456)
args = parser.parse_args()
USE_CUDA = args.cuda
if __name__ == '__main__':
args.name = "finetune_" + args.name
print("="*50)
print("THE EXPERIMENT LOG IS SAVED IN: " + "log/" + args.name)
print("TRAINING MANIFEST: ", args.train_manifest_list)
print("VALID MANIFEST: ", args.valid_manifest_list)
print("TEST MANIFEST: ", args.test_manifest_list)
print("INPUT TYPE: ", args.input_type)
print("OPT NAME: ", args.opt_name)
print("="*50)
if not os.path.exists("./log"): os.mkdir("./log")
for handler in logging.root.handlers[:]: logging.root.removeHandler(handler)
logging.basicConfig(filename="log/" + args.name + ".log", filemode='a+', format='%(asctime)s - %(message)s', level=logging.INFO)
print("RESUME TRAINING")
logging.info("RESUME TRAINING")
audio_conf = dict(sample_rate=args.sample_rate,
window_size=args.window_size,
window_stride=args.window_stride,
window=args.window,
noise_dir=args.noise_dir,
noise_prob=args.noise_prob,
noise_levels=(args.noise_min, args.noise_max))
logging.info(audio_conf)
with open(args.labels_path, encoding="utf-8") as label_file:
labels = json.load(label_file)
vocab = Vocab()
for label in labels:
vocab.add_token(label)
vocab.add_label(label)
train_data_list = []
for i in range(len(args.train_manifest_list)):
if args.feat == "spectrogram":
train_data = SpectrogramDataset(vocab, args, audio_conf, manifest_filepath_list=args.train_manifest_list, normalize=True, augment=args.augment, input_type=args.input_type, is_train=True, partitions=args.train_partition_list)
elif args.feat == "logfbank":
train_data = LogFBankDataset(vocab, args, audio_conf, manifest_filepath_list=args.train_manifest_list, normalize=True, augment=args.augment, input_type=args.input_type, is_train=True)
train_data_list.append(train_data)
valid_loader_list, test_loader_list = [], []
for i in range(len(args.valid_manifest_list)):
if args.feat == "spectrogram":
valid_data = SpectrogramDataset(vocab, args, audio_conf, manifest_filepath_list=[args.valid_manifest_list[i]], normalize=True, augment=args.augment, input_type=args.input_type)
elif args.feat == "logfbank":
valid_data = LogFBankDataset(vocab, args, audio_conf, manifest_filepath_list=[args.valid_manifest_list[i]], normalize=True, augment=False, input_type=args.input_type)
valid_sampler = BucketingSampler(valid_data, batch_size=args.k_train)
valid_loader = AudioDataLoader(pad_token_id=vocab.PAD_ID, dataset=valid_data, num_workers=args.num_workers)
valid_loader_list.append(valid_loader)
start_epoch = 0
metrics = None
loaded_args = None
logging.info("Continue from checkpoint:" + args.continue_from)
if args.training_mode == "meta":
model, vocab, _, _, epoch, metrics, loaded_args = load_meta_model(args.continue_from)
else:
model, vocab, _, epoch, metrics, loaded_args = load_joint_model(args.continue_from)
verbose = args.verbose
loss_type = args.loss
if USE_CUDA:
model = model.cuda()
logging.info(model)
num_epochs = args.epochs
print("Parameters: {}(trainable), {}(non-trainable)".format(compute_num_params(model)[0], compute_num_params(model)[1]))
trainer = JointTrainer()
trainer.train(model, vocab, train_data_list, valid_loader_list, loss_type, start_epoch, num_epochs, args, evaluate_every=args.evaluate_every, last_metrics=metrics, early_stop=args.early_stop, cpu_state_dict=args.cpu_state_dict, is_copy_grad=args.copy_grad, opt_name=args.opt_name)