-
Notifications
You must be signed in to change notification settings - Fork 1
/
futures.knit.rmd
84 lines (39 loc) · 1.03 KB
/
futures.knit.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
title: "Forwards and Futures Formula Sheet"
author: "Alex Dou"
date: "March 10, 2019"
output:
pdf_document: default
---
### Hedging
$$ basis=S_t-F_t $$
$$ h^* = \rho\frac{\sigma_S}{\sigma_F} $$
$$ N^* = h^*\frac{V_A}{V_F} $$
$$ N^* = \beta\frac{V_P}{V_F} $$
$$ N^*=(\beta^*-\beta)\frac{V_P}{V_F} $$
### Standard form
$$ F=Se^{rt} $$
### With dividend
$$ F_0=S_0e^{(r-q)T} $$
### Exchange Futures
$$ F_0=S_0e^{(r-r_f)T} $$
### With storage cost
$$ F_0=(S_0+U)e^{rt} $$
$$ F_0=S_0e^{(r+u)T} $$
### With yield rate
$$ F_0=S_0e^{(r+u-y)T} $$
### With cost of carrying
$$ F_0=S_0e^{cT} $$
$$ F_0=S_0e^{(c-y)T} $$
### Interest Futures
$$ P=\frac{360}{n}(100-y) $$
### Cheapest-to-deliver bond
$$ CTD = min(B_{quoted} -F_{quoted}CF) $$
### Euro-Dollar Future
$$ F_{eurodollar} = 10000\times[100-0.25(100-Z)] $$
$$ Value(1bp) = 25USD $$
### Duration hedge
$$ N = -\frac{V_p D_p}{V_f D_f}$$
$$ N = -\frac{V_p D_p}{V_f D_f} \beta$$
### The value of forward
$$ V_{forward} = S_0 (F-K)e^{-rt} $$