forked from huawei-noah/Efficient-Computing
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathteacher-train.py
181 lines (141 loc) · 6.17 KB
/
teacher-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved.
#This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License.
#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details.
import os
from lenet import LeNet5
import resnet
import torch
from torch.autograd import Variable
from torchvision.datasets.mnist import MNIST
from torchvision.datasets import CIFAR10
from torchvision.datasets import CIFAR100
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import argparse
parser = argparse.ArgumentParser(description='train-teacher-network')
# Basic model parameters.
parser.add_argument('--dataset', type=str, default='MNIST', choices=['MNIST','cifar10','cifar100'])
parser.add_argument('--data', type=str, default='/cache/data/')
parser.add_argument('--output_dir', type=str, default='/cache/models/')
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
acc = 0
acc_best = 0
if args.dataset == 'MNIST':
data_train = MNIST(args.data,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
data_test = MNIST(args.data,
train=False,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
data_train_loader = DataLoader(data_train, batch_size=256, shuffle=True, num_workers=8)
data_test_loader = DataLoader(data_test, batch_size=1024, num_workers=8)
net = LeNet5().cuda()
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
if args.dataset == 'cifar10':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
data_train = CIFAR10(args.data,
transform=transform_train)
data_test = CIFAR10(args.data,
train=False,
transform=transform_test)
data_train_loader = DataLoader(data_train, batch_size=128, shuffle=True, num_workers=8)
data_test_loader = DataLoader(data_test, batch_size=100, num_workers=0)
net = resnet.ResNet34().cuda()
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
if args.dataset == 'cifar100':
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
data_train = CIFAR100(args.data,
transform=transform_train)
data_test = CIFAR100(args.data,
train=False,
transform=transform_test)
data_train_loader = DataLoader(data_train, batch_size=128, shuffle=True, num_workers=0)
data_test_loader = DataLoader(data_test, batch_size=128, num_workers=0)
net = resnet.ResNet34(num_classes=100).cuda()
criterion = torch.nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
def adjust_learning_rate(optimizer, epoch):
"""For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs"""
if epoch < 80:
lr = 0.1
elif epoch < 120:
lr = 0.01
else:
lr = 0.001
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(epoch):
if args.dataset != 'MNIST':
adjust_learning_rate(optimizer, epoch)
global cur_batch_win
net.train()
loss_list, batch_list = [], []
for i, (images, labels) in enumerate(data_train_loader):
images, labels = Variable(images).cuda(), Variable(labels).cuda()
optimizer.zero_grad()
output = net(images)
loss = criterion(output, labels)
loss_list.append(loss.data.item())
batch_list.append(i+1)
if i == 1:
print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, loss.data.item()))
loss.backward()
optimizer.step()
def test():
global acc, acc_best
net.eval()
total_correct = 0
avg_loss = 0.0
with torch.no_grad():
for i, (images, labels) in enumerate(data_test_loader):
images, labels = Variable(images).cuda(), Variable(labels).cuda()
output = net(images)
avg_loss += criterion(output, labels).sum()
pred = output.data.max(1)[1]
total_correct += pred.eq(labels.data.view_as(pred)).sum()
avg_loss /= len(data_test)
acc = float(total_correct) / len(data_test)
if acc_best < acc:
acc_best = acc
print('Test Avg. Loss: %f, Accuracy: %f' % (avg_loss.data.item(), acc))
def train_and_test(epoch):
train(epoch)
test()
def main():
if args.dataset == 'MNIST':
epoch = 10
else:
epoch = 200
for e in range(1, epoch):
train_and_test(e)
torch.save(net,args.output_dir + 'teacher')
if __name__ == '__main__':
main()