forked from rigtorp/ipc-bench
-
Notifications
You must be signed in to change notification settings - Fork 32
/
shmem_pipe_thr.c
666 lines (599 loc) · 17.4 KB
/
shmem_pipe_thr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/* Another kind of shared memory test. The idea here is that we have
a shared-memory region and a malloc-like thing for allocating from
it, and we also have a couple of pipes. Messages are sent by
allocating a chunk of the shared region and then sending an extent
through the pipe. Once the receiver is finished with the message,
they send another extent back through the other pipe saying that
they're done. */
#include <sys/poll.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <assert.h>
#include <err.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "test.h"
#include "xutil.h"
#undef UNSAFE_ALLOCATOR
#define PAGE_ORDER 12
#define CACHE_LINE_SIZE 64
static unsigned ring_order = 9;
#define ring_size (1ul << (PAGE_ORDER + ring_order))
#define EXTENT_BUFFER_SIZE 4096
#define ALLOC_FAILED ((unsigned)-1)
#ifdef NDEBUG
#define DBG(x) do {} while (0)
#else
#define DBG(x) do { x; } while (0)
#endif
struct extent {
unsigned base;
unsigned size;
};
struct shmem_pipe {
void *ring;
#ifndef UNSAFE_ALLOCATOR
struct alloc_node *first_alloc, *next_free_alloc, *last_freed_node;
#ifndef NDEBUG
int nr_alloc_nodes;
#endif
#endif
int child_to_parent_read, child_to_parent_write;
int parent_to_child_read, parent_to_child_write;
// Parent state
unsigned char rx_buf[EXTENT_BUFFER_SIZE];
unsigned rx_buf_prod;
unsigned rx_buf_cons;
// Child state
unsigned char incoming[EXTENT_BUFFER_SIZE];
struct extent outgoing_extents[EXTENT_BUFFER_SIZE/sizeof(struct extent)];
int incoming_bytes;
int incoming_bytes_consumed;
unsigned nr_outgoing_extents;
unsigned outgoing_extent_bytes;
struct iovec iov;
};
#ifdef UNSAFE_ALLOCATOR
static unsigned shared_consumer, shared_producer;
static unsigned
alloc_shared_space(struct shmem_pipe *sp, unsigned size)
{
unsigned res;
if (shared_producer - shared_consumer > ring_size - size)
return ALLOC_FAILED;
res = shared_producer % ring_size;
shared_producer += size;
return res;
}
static void
release_shared_space(struct shmem_pipe *sp, unsigned base, unsigned size)
{
assert(shared_consumer == base);
shared_consumer += size;
}
#else
/* Our allocation structure is a simple linked list. That's pretty
stupid, *except* that the allocation pattern is almost always a
very simple queue, so it becomes very simple. i.e. we release
stuff in a FIFO order wrt allocations, so we effectively just have
one allocated region which loops around the shared area, which
makes the linked list very short and everything is very easy. */
struct alloc_node {
struct alloc_node *next, *prev;
int is_free;
unsigned long start;
unsigned long end;
};
#ifndef NDEBUG
static void
sanity_check(const struct shmem_pipe *sp)
{
const struct alloc_node *cursor;
int found_nf = 0, found_lf = 0;
int n = 0;
assert(sp->first_alloc);
assert(sp->first_alloc->start == 0);
for (cursor = sp->first_alloc;
cursor;
cursor = cursor->next) {
n++;
if (cursor == sp->first_alloc)
assert(!cursor->prev);
else
assert(cursor->prev);
if (cursor->next)
assert(cursor->next->prev == cursor);
if (cursor->prev)
assert(cursor->start == cursor->prev->end);
if (cursor->prev)
assert(cursor->is_free == !cursor->prev->is_free);
if (!cursor->next)
assert(cursor->end == ring_size);
if (cursor == sp->next_free_alloc) {
assert(!found_nf);
found_nf = 1;
}
if (cursor == sp->last_freed_node) {
assert(!found_lf);
found_lf = 1;
}
assert(cursor->start < cursor->end);
}
if (!found_nf)
assert(!sp->next_free_alloc);
else
assert(sp->next_free_alloc->is_free);
if (!found_lf)
assert(!sp->last_freed_node);
else
assert(sp->last_freed_node->is_free);
assert(n == sp->nr_alloc_nodes);
}
#else
static void
sanity_check(const struct shmem_pipe *sp)
{
}
#endif
static unsigned
alloc_shared_space(struct shmem_pipe *sp, unsigned size)
{
unsigned res;
sanity_check(sp);
/* Common case */
if (sp->next_free_alloc &&
sp->next_free_alloc->end >= size + sp->next_free_alloc->start &&
sp->next_free_alloc->prev) {
allocate_next_free:
assert(!sp->next_free_alloc->prev->is_free);
assert(sp->next_free_alloc->is_free);
res = sp->next_free_alloc->start;
sp->next_free_alloc->start += size;
sp->next_free_alloc->prev->end += size;
if (sp->next_free_alloc->start == sp->next_free_alloc->end) {
if (sp->next_free_alloc->next) {
assert(!sp->next_free_alloc->next->is_free);
sp->next_free_alloc->prev->next = sp->next_free_alloc->next->next;
sp->next_free_alloc->prev->end = sp->next_free_alloc->next->end;
if (sp->next_free_alloc->next->next) {
assert(sp->next_free_alloc->next->next->is_free);
sp->next_free_alloc->next->next->prev = sp->next_free_alloc->prev;
}
struct alloc_node *p = sp->next_free_alloc->next->next;
DBG(sp->nr_alloc_nodes--);
free(sp->next_free_alloc->next);
if (sp->next_free_alloc->next == sp->last_freed_node)
sp->last_freed_node = NULL;
sp->next_free_alloc->next = p;
} else {
if (sp->next_free_alloc->prev)
sp->next_free_alloc->prev->next = NULL;
}
if (sp->first_alloc == sp->next_free_alloc) {
assert(sp->next_free_alloc->next);
assert(!sp->next_free_alloc->prev);
sp->first_alloc = sp->next_free_alloc->next;
}
if (sp->next_free_alloc == sp->last_freed_node)
sp->last_freed_node = NULL;
DBG(sp->nr_alloc_nodes--);
free(sp->next_free_alloc);
sp->next_free_alloc = NULL;
}
sanity_check(sp);
return res;
}
/* Slightly harder case: have to search the linked list */
for (sp->next_free_alloc = sp->first_alloc;
sp->next_free_alloc &&
(!sp->next_free_alloc->is_free || sp->next_free_alloc->end - sp->next_free_alloc->start < size);
sp->next_free_alloc = sp->next_free_alloc->next)
;
if (!sp->next_free_alloc) {
/* Shared area is full */
return ALLOC_FAILED;
}
struct alloc_node *f = sp->next_free_alloc;
assert(f->is_free);
if (!f->prev) {
/* Allocate the start of the arena. */
assert(f->start == 0);
assert(f == sp->first_alloc);
if (f->end == size) {
/* We're going to convert next_free_alloc to
* an in-use node. This may involve forwards
* merging. */
if (f->next) {
struct alloc_node *t = f->next;
assert(!t->is_free);
f->end = t->end;
f->next = t->next;
if (f->next)
f->next->prev = f;
if (sp->last_freed_node == t)
sp->last_freed_node = NULL;
DBG(sp->nr_alloc_nodes--);
free(t);
}
f->is_free = 0;
} else {
f = calloc(sizeof(struct alloc_node), 1);
DBG(sp->nr_alloc_nodes++);
f->next = sp->first_alloc;
f->start = 0;
f->end = size;
assert(f->next);
f->next->prev = f;
f->next->start = size;
sp->first_alloc = f;
}
if (sp->last_freed_node == sp->first_alloc)
sp->last_freed_node = sp->first_alloc->next;
if (sp->next_free_alloc == sp->first_alloc)
sp->next_free_alloc = sp->first_alloc->next;
sanity_check(sp);
return 0;
} else {
goto allocate_next_free;
}
}
static void
release_shared_space(struct shmem_pipe *sp, unsigned start, unsigned size)
{
struct alloc_node *lan = sp->last_freed_node;
assert(start <= ring_size);
assert(start + size <= ring_size);
assert(size > 0);
sanity_check(sp);
if (lan &&
lan->is_free &&
lan->end == start) {
struct alloc_node *next;
free_from_here:
next = lan->next;
assert(next);
assert(!next->is_free);
assert(next->start == start);
assert(next->end >= start + size);
next->start += size;
lan->end += size;
if (next->start == next->end) {
/* We just closed a hole. Previously, we had
LAN->next->X, where LAN is sp->last_freed_node,
next is some free region, and X is either
NULL or some allocated region. next is now
zero-sized, so we want to remove it and
convert to LAN->X. However, LAN and X are
the same type (i.e. both non-free), so we
can extend LAN to cover X and remove X as
well. */
struct alloc_node *X = next->next;
if (X) {
/* Convert LAN->next->X->Y into
LAN->Y */
struct alloc_node *Y = X->next;
assert(X->is_free);
if (Y) {
assert(!Y->is_free);
Y->prev = lan;
}
lan->end = X->end;
lan->next = Y;
if (X == sp->next_free_alloc)
sp->next_free_alloc = lan;
DBG(sp->nr_alloc_nodes--);
free(X);
} else {
/* Just turn LAN->free1->NULL into
LAN->NULL */
assert(lan->end == next->start);
lan->next = NULL;
}
if (next == sp->next_free_alloc)
sp->next_free_alloc = lan;
DBG(sp->nr_alloc_nodes--);
free(next);
}
sanity_check(sp);
return;
}
/* More tricky case: we're freeing something which doesn't hit
* the cache. */
for (lan = sp->first_alloc;
lan && (lan->end <= start || lan->start > start);
lan = lan->next)
;
assert(lan); /* Or else we're freeing something outside of the arena */
assert(!lan->is_free); /* Or we have a double free */
if (lan->start == start) {
/* Free out the start of this block. */
assert(!lan->is_free);
if (lan->prev) {
assert(lan->prev->is_free);
assert(lan->prev->end == start);
sp->last_freed_node = lan = lan->prev;
goto free_from_here;
}
/* Turn the very start of the arena into a free
* block */
assert(lan == sp->first_alloc);
assert(start == 0);
if (lan->end == size) {
/* Easy: just convert the existing node to a
* free one. */
lan->is_free = 1;
if (lan->next && lan->next->is_free) {
/* First node is now free, and the
second node already was -> merge
them. */
struct alloc_node *t = lan->next;
lan->end = t->end;
lan->next = t->next;
if (lan->next)
lan->next->prev = lan;
if (sp->last_freed_node == t)
sp->last_freed_node = lan;
if (sp->next_free_alloc == t)
sp->next_free_alloc = lan;
DBG(sp->nr_alloc_nodes--);
free(t);
}
sanity_check(sp);
} else {
/* Need a new node in the list */
lan = calloc(sizeof(*lan), 1);
lan->is_free = 1;
lan->end = size;
sp->first_alloc->start = lan->end;
sp->first_alloc->prev = lan;
lan->next = sp->first_alloc;
sp->first_alloc = lan;
sp->last_freed_node = sp->first_alloc;
DBG(sp->nr_alloc_nodes++);
sanity_check(sp);
}
return;
}
assert(start < lan->end);
assert(start + size <= lan->end);
if (start + size == lan->end) {
/* Free out the end of this block */
if (lan->next) {
assert(lan->next->is_free);
lan->next->start -= size;
lan->end -= size;
assert(lan->end != lan->start);
} else {
struct alloc_node *t = calloc(sizeof(*lan), 1);
t->prev = lan;
t->is_free = 1;
t->start = start;
t->end = start + size;
lan->next = t;
lan->end = start;
DBG(sp->nr_alloc_nodes++);
}
if (!sp->next_free_alloc)
sp->next_free_alloc = lan->next;
sp->last_freed_node = lan->next;
sanity_check(sp);
return;
}
/* Okay, this is the tricky case. We have a single allocated
node, and we need to convert it into three: an allocated
node, a free node, and then another allocated node. How
tedious. */
struct alloc_node *a = calloc(sizeof(*a), 1);
struct alloc_node *b = calloc(sizeof(*b), 1);
a->next = b;
a->prev = lan;
a->is_free = 1;
a->start = start;
a->end = start + size;
b->next = lan->next;
b->prev = a;
b->is_free = 0;
b->start = start + size;
b->end = lan->end;
if (lan->next)
lan->next->prev = b;
lan->next = a;
lan->end = start;
DBG(sp->nr_alloc_nodes += 2);
if (!sp->next_free_alloc)
sp->next_free_alloc = a;
/* And we're done. */
sanity_check(sp);
}
#endif
static void
init_test(test_data *td)
{
struct shmem_pipe *sp = calloc(sizeof(*sp), 1);
int pip[2];
sp->ring = establish_shm_segment(1 << ring_order, td->numa_node);
if (pipe(pip) < 0)
err(1, "pipe()");
sp->child_to_parent_read = pip[0];
sp->child_to_parent_write = pip[1];
if (pipe(pip) < 0)
err(1, "pipe()");
sp->parent_to_child_read = pip[0];
sp->parent_to_child_write = pip[1];
td->data = sp;
#ifndef UNSAFE_ALLOCATOR
sp->first_alloc = calloc(sizeof(*sp->first_alloc), 1);
sp->first_alloc->is_free = 1;
sp->first_alloc->end = ring_size;
DBG(sp->nr_alloc_nodes = 1);
#endif
}
static void
init_child(test_data *td)
{
struct shmem_pipe *sp = td->data;
sp->outgoing_extent_bytes = 0; // DATA bytes described by queued outgoing extents
sp->nr_outgoing_extents = 0;
sp->incoming_bytes = 0; // METADATA bytes in the incoming extent buffer
sp->incoming_bytes_consumed = 0; // of which, already consumed
close(sp->child_to_parent_read);
close(sp->parent_to_child_write);
}
static struct iovec* get_read_buffer(test_data* td, int len, int* n_vecs) {
struct shmem_pipe *sp = td->data;
while(sp->incoming_bytes_consumed - sp->incoming_bytes < sizeof(struct extent)) {
int k = read(sp->parent_to_child_read,
(void *)sp->incoming + sp->incoming_bytes,
sizeof(sp->incoming) - sp->incoming_bytes);
if (k == 0) {
close(sp->child_to_parent_write);
close(sp->parent_to_child_read);
*n_vecs = 0;
return 0;
}
if (k < 0)
err(1, "child read");
sp->incoming_bytes += k;
}
struct extent *inc = (struct extent*)(sp->incoming + sp->incoming_bytes_consumed);
assert(inc->base <= ring_size);
assert(inc->base + inc->size <= ring_size);
sp->iov.iov_base = sp->ring + inc->base;
sp->iov.iov_len = inc->size;
*n_vecs = 1;
return &sp->iov;
}
static void release_read_buffer(test_data* td, struct iovec* vecs, int nvecs) {
struct shmem_pipe *sp = td->data;
assert(nvecs == 1 && vecs == &sp->iov);
struct extent *inc = (struct extent*)(sp->incoming + sp->incoming_bytes_consumed);
assert(sp->ring + inc->base == vecs[0].iov_base);
assert(inc->size == vecs[0].iov_len);
// Dismiss this incoming extent
sp->incoming_bytes_consumed += sizeof(struct extent);
if(sp->incoming_bytes_consumed - sp->incoming_bytes < sizeof(struct extent)) {
memmove(sp->incoming, sp->incoming + sp->incoming_bytes_consumed, sp->incoming_bytes - sp->incoming_bytes_consumed);
sp->incoming_bytes -= sp->incoming_bytes_consumed;
sp->incoming_bytes_consumed = 0;
}
// Queue it for transmission back to the writer
struct extent *out;
out = &sp->outgoing_extents[sp->nr_outgoing_extents-1];
/* Try to reuse previous outgoing extent */
if (sp->nr_outgoing_extents != 0 && out->base + out->size == inc->base) {
out->size += inc->size;
} else {
sp->outgoing_extents[sp->nr_outgoing_extents] = *inc;
sp->nr_outgoing_extents++;
}
sp->outgoing_extent_bytes += inc->size;
// Send the queued extents, if the queue is big enough
if (sp->outgoing_extent_bytes > ring_size / 8) {
xwrite(sp->child_to_parent_write,
sp->outgoing_extents,
sp->nr_outgoing_extents * sizeof(struct extent));
sp->nr_outgoing_extents = 0;
sp->outgoing_extent_bytes = 0;
}
}
static void
wait_for_returned_buffers(struct shmem_pipe *sp)
{
int r;
int s;
static int total_read;
s = read(sp->child_to_parent_read, sp->rx_buf + sp->rx_buf_prod, sizeof(sp->rx_buf) - sp->rx_buf_prod);
if (s < 0)
err(1, "error reading in parent");
total_read += s;
sp->rx_buf_prod += s;
for (r = 0; r < sp->rx_buf_prod / sizeof(struct extent); r++) {
struct extent *e = &((struct extent *)sp->rx_buf)[r];
release_shared_space(sp, e->base, e->size);
}
if (sp->rx_buf_prod != r * sizeof(struct extent))
memmove(sp->rx_buf,
sp->rx_buf + sp->rx_buf_prod - (sp->rx_buf_prod % sizeof(struct extent)),
sp->rx_buf_prod % sizeof(struct extent));
sp->rx_buf_prod %= sizeof(struct extent);
}
static struct iovec*
get_write_buffer(test_data* td, int message_size, int* n_vecs)
{
struct shmem_pipe *sp = td->data;
unsigned long offset;
while ((offset = alloc_shared_space(sp, message_size)) == ALLOC_FAILED)
wait_for_returned_buffers(sp);
sp->iov.iov_base = sp->ring + offset;
sp->iov.iov_len = message_size;
*n_vecs = 1;
return &sp->iov;
}
static void
release_write_buffer(test_data* td, struct iovec* vecs, int nvecs)
{
struct shmem_pipe *sp = td->data;
struct extent ext;
assert(nvecs == 1 && vecs == &sp->iov);
unsigned long offset = vecs[0].iov_base - sp->ring;
ext.base = offset;
ext.size = vecs[0].iov_len;
xwrite(sp->parent_to_child_write, &ext, sizeof(ext));
assert(sp->nr_alloc_nodes <= 3);
}
static void
parent_finish(test_data* td)
{
struct shmem_pipe *sp = td->data;
char buf[1024];
int r;
close(sp->parent_to_child_write);
/* Wait for the other pipe to drain, which confirms receipt of
all messages. */
while (1) {
r = read(sp->child_to_parent_read, buf, sizeof(buf));
if (r == 0)
break;
if (r < 0)
err(1, "reading in parent for child shutdown");
}
close(sp->child_to_parent_read);
}
static void
init_parent(test_data *td)
{
struct shmem_pipe *sp = td->data;
close(sp->child_to_parent_write);
close(sp->parent_to_child_read);
}
int
main(int argc, char *argv[])
{
test_t t =
{ .name = "shmem_pipe_thr",
.is_latency_test = 0,
.init_test = init_test,
.init_parent = init_parent,
.finish_parent = parent_finish,
.init_child = init_child,
.get_write_buffer = get_write_buffer,
.release_write_buffer = release_write_buffer,
.get_read_buffer = get_read_buffer,
.release_read_buffer = release_read_buffer
};
char *_ring_order = getenv("SHMEM_RING_ORDER");
if (_ring_order) {
int as_int;
if (sscanf(_ring_order, "%d", &as_int) != 1)
err(1, "SHMEM_RING_ORDER must be an integer");
if (as_int < 0 || as_int > 15)
errx(1, "SHMEM_RING_ORDER must be between 0 and 15");
ring_order = as_int;
}
run_test(argc, argv, &t);
return 0;
}