-
Notifications
You must be signed in to change notification settings - Fork 22
/
Backpack III.java
executable file
·227 lines (198 loc) · 7.85 KB
/
Backpack III.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
H
1524723994
tags: DP, Backpack DP
给n种不同的物品, int[] A weight, int[] V value, 每种物品可以用无限次
问最大多少value可以装进size是 m 的包?
#### DP
- 可以无限使用物品, 就失去了last i, last unique item的意义: 因为可以重复使用.
- 所以可以转换一个角度:
- 1. 用i **种** 物品, 拼出w, 并且满足题目条件(max value). 这里因为item i可以无限次使用, 所以考虑使用了多少次K.
- 2. K虽然可以无限, 但是也被 k*A[i]所限制: 最大不能超过背包大小.
- dp[i][w]: 前i种物品, fill weight w 的背包, 最大价值是多少.
- dp[i][w] = max {dp[i - 1][w - k*A[i-1]] + kV[i-1]}, k >= 0
- Time O(nmk)
- 如果k = 0 或者 1, 其实就是 Backpack II: 拿或者不拿
#### 优化
- 优化时间复杂度, 画图发现:
- 所计算的 (dp[i - 1][j - k*A[i - 1]] + k * V[i - 1])
- 其实跟同一行的 dp[i][j-A[i-1]] 那个格子, 就多出了 V[i-1]
- 所以没必要每次都 loop over k times
- 简化: dp[i][j] 其中一个可能就是: dp[i][j - A[i - 1]] + V[i - 1]
- Time O(mn)
#### 空间优化到1维数组
- 根据上一个优化的情况, 画出 2 rows 网格
- 发现 dp[i][j] 取决于: 1. dp[i - 1][j], 2. dp[i][j - A[i - 1]]
- 其中: dp[i - 1][j] 是上一轮 (i-1) 的结算结果, 一定是已经算好, ready to be used 的
- 然而, 当我们 i++,j++ 之后, 在之前 row = i - 1, col < j的格子, 全部不需要.
- 降维简化: 只需要留着 weigth 这个 dimension, 而i这个dimension 可以省略:
- (i - 1) row 不过是需要用到之前算出的旧value: 每一轮, j = [0 ~ m], 那么dp[j]本身就有记录旧值的功能.
- 变成1个一位数组
- 降维优化的重点: 看双行的左右计算方向
- Time(mn). Space(m)
```
/*
Given n kind of items with size Ai and value Vi
(each item has an infinite number available)
and a backpack with size m.
What's the maximum value can you put into the backpack?
Notice
You cannot divide item into small pieces and the total size of items
you choose should smaller or equal to m.
*/
/*
Thoughts:
dp[i][w]: first i types of items to fill weight w, find the max value.
1st loop: which type of item to pick from A
2nd loop: weight from 0 ~ m
3rd loop: # times when A[i] is used.
Goal: dp[n][m]
Condition1: didn't pick A[i - 1], dp[i][j] = dp[i - 1][j];
Condition2: pickced A[i - 1], dp[i][j] = dp[i - 1][j - k * A[i - 1]] + k * V[i - 1];
O(nmk)
*/
public class Solution {
public int backPackIII(int[] A, int[] V, int m) {
if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
return 0;
}
int n = A.length;
int[][] dp = new int[n + 1][m + 1];
dp[0][0] = 0; // 0 items to fill 0 weight, value = 0
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
dp[i][j] = dp[i - 1][j];
for (int k = 1; k * A[i - 1] <= j; k++) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * A[i - 1]] + k * V[i - 1]);
}
}
}
return dp[n][m];
}
}
/**
Optimization1:
- 优化时间复杂度, 画图发现:
- 所计算的 (dp[i - 1][j - k*A[i - 1]] + k * V[i - 1])
- 其实跟同一行的 dp[i][j-A[i-1]] 那个格子, 就多出了 V[i-1]
- 所以没必要每次都 loop over k times
- 简化: dp[i][j] 其中一个可能就是: dp[i][j - A[i - 1]] + V[i - 1]
*/
public class Solution {
public int backPackIII(int[] A, int[] V, int m) {
if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
return 0;
}
int n = A.length;
int[][] dp = new int[n + 1][m + 1];
dp[0][0] = 0; // 0 items to fill 0 weight, value = 0
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) {
dp[i][j] = dp[i - 1][j];
if (j >= A[i - 1]) {
dp[i][j] = Math.max(dp[i][j], dp[i][j - A[i - 1]] + V[i - 1]);
}
}
}
return dp[n][m];
}
}
/**
Optimization2:
- 根据上一个优化的情况, 画出 2 rows 网格
- 发现 dp[i][j] 取决于: 1. dp[i - 1][j], 2. dp[i][j - A[i - 1]]
- 其中: dp[i - 1][j] 是上一轮 (i-1) 的结算结果, 一定是已经算好, ready to be used 的
- 然而, 当我们 i++,j++ 之后, 在之前 row = i - 1, col < j的格子, 全部不需要.
- 降维简化: 只需要留着 weigth 这个 dimension, 而i这个dimension 可以省略:
- (i - 1) row 不过是需要用到之前算出的旧value: 每一轮, j = [0 ~ m], 那么dp[j]本身就有记录旧值的功能.
*/
public class Solution {
public int backPackIII(int[] A, int[] V, int m) {
if (A == null || A.length == 0 || V == null || V.length == 0 || m <= 0) {
return 0;
}
int n = A.length;
int[] dp = new int[m + 1]; // DP on weight
dp[0] = 0; // 0 items to fill 0 weight, value = 0
for (int i = 1; i <= n; i++) {
for (int j = A[i - 1]; j <= m && j >= A[i - 1]; j++) {
dp[j] = Math.max(dp[j], dp[j - A[i - 1]] + V[i - 1]);
}
}
return dp[m];
}
}
/*
Thoughts:
Can pick any item for infinite times: there is no indicator of what's being picked last.
We don't know which item && how many times it was picked.
We should consider tracking: what type of items was picked how many times
(consider once done with 1 type of item, move on to others and never re-pick)
If A[i-1] was picked 0, 1, 2 ...., k times, then
dp[i][w] = max{dp[i - 1][j - k*A[i - 1]] + k*V[i - 1]}, where k >= 0 -> infinite
Space: O(mn)
Time: O(m * m * n) = O(nm^2)
*/
public class Solution {
public int backPackIII(int[] A, int[] V, int m) {
if (A == null || V == null || A.length != V.length) {
return 0;
}
int n = A.length;
int[][] dp = new int[n + 1][m + 1]; // max value with i items of weight w.
for (int j = 0; j <= m; j++) {
dp[0][j] = -1; // 0 items cannot form j weight, hence value = 0
}
dp[0][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) { // for all weight j at i items
for (int k = 0; k * A[i - 1] <= m; k++) { // use A[i-1] for k times
if (j - k * A[i - 1] >= 0 && dp[i - 1][j - k * A[i - 1]] != -1) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - k * A[i - 1]] + k * V[i - 1]);
}
}
}
}
int rst = 0;
for (int j = 0; j <= m; j++) {
rst = Math.max(rst, dp[n][j]);
}
return rst;
}
}
// Optimization
// curve up
/*
dp[i][w] = max{dp[i - 1][j - k*A[i - 1]] + k*V[i - 1]}, where k >= 0 -> infinite
1. Every position, we are adding k*V[i - 1]
2. If we draw out how V[i-1] was being added alone with k = [0 ~ ...], we realize:
the next i is basically: max{...all k's possibilities} + V[i - 1]
So it reduces to:
dp[i][w] = max{dp[i - 1][w], dp[i][w - A[i-1]] + V[i-1]}
*/
public class Solution {
public int backPackIII(int[] A, int[] V, int m) {
if (A == null || V == null || A.length != V.length) {
return 0;
}
int n = A.length;
int[][] dp = new int[n + 1][m + 1]; // max value with i items of weight w.
for (int j = 0; j <= m; j++) {
dp[0][j] = -1; // 0 items cannot form j weight, hence value = 0
}
dp[0][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) { // for all weight j at i items
dp[i][j] = dp[i - 1][j];
if (j - A[i - 1] >= 0) {
dp[i][j] = Math.max(dp[i][j], dp[i][j - A[i - 1]] + V[i - 1]);
}
}
}
int rst = 0;
for (int j = 0; j <= m; j++) {
rst = Math.max(rst, dp[n][j]);
}
return rst;
}
}
```