-
Notifications
You must be signed in to change notification settings - Fork 0
/
Helpers_NN.py
100 lines (61 loc) · 2.73 KB
/
Helpers_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from nltk.tokenize import RegexpTokenizer
from sklearn.metrics import confusion_matrix
tokenizer = RegexpTokenizer(r'[a-zA-Z]+')
#===============================================================================================#
# Method to Add Suffix '_sum' to Review Summary
#===============================================================================================#
def add_sum_suffix(text):
token_list = tokenizer.tokenize(text.lower())
new_text = ''
for word in token_list:
word = word + '_sum'
new_text += word + ' '
return new_text
#===============================================================================================#
# Method to Tokenize Review Column
#===============================================================================================#
def text_cleanup(text):
token_list = tokenizer.tokenize(text.lower())
new_text = ''
for word in token_list:
new_text += word + ' '
return new_text
#===============================================================================================#
# Method to Reverse Encode 'Score' Column
#===============================================================================================#
def reverse_encode(y_df):
y_df['score'] = (y_df.iloc[:, 0:] == 1).idxmax(1)['score'] = (y_df.iloc[:, 0:] == 1).idxmax(1)
for i in range(0,len(y_df)):
if y_df.iloc[i,-1] == 'score_1':
y_df.iloc[i,-1] = 1
elif y_df.iloc[i,-1] == 'score_2':
y_df.iloc[i,-1] = 2
elif y_df.iloc[i,-1]== 'score_3':
y_df.iloc[i,-1] = 3
elif y_df.iloc[i,-1]== 'score_4':
y_df.iloc[i,-1] = 4
elif y_df.iloc[i,-1] == 'score_5':
y_df.iloc[i,-1]= 5
#===============================================================================================#
# Method to Adjust Argmax of Score to a 1-5 Scale
#===============================================================================================#
def add_one_argmax_score(x):
x = x+1
return x
#===============================================================================================#
# Method to Create a Confusion Matriz
#===============================================================================================#
def conf_matrix(cm):
plt.figure(figsize=(9,9))
ax = sns.heatmap(cm,
annot= True,
fmt = '.4g',
cbar=0,
xticklabels=[1,2,3,4,5],
yticklabels=[1,2,3,4,5])
ax.set(xlabel='Predicted', ylabel='True')
plt.show()