This construct library allows you to define Amazon Elastic Container Service for Kubernetes (EKS) clusters. In addition, the library also supports defining Kubernetes resource manifests within EKS clusters.
- Amazon EKS Construct Library
- Table Of Contents
- Quick Start
- Architectural Overview
- Provisioning clusters
- Permissions and Security
- Applying Kubernetes Resources
- Patching Kubernetes Resources
- Querying Kubernetes Resources
- Using existing clusters
- Logging
- Known Issues and Limitations
This example defines an Amazon EKS cluster with the following configuration:
- Dedicated VPC with default configuration (Implicitly created using ec2.Vpc)
- A Kubernetes pod with a container based on the paulbouwer/hello-kubernetes image.
import { KubectlV29Layer } from '@aws-cdk/lambda-layer-kubectl-v29';
// provisioning a cluster
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
kubectlLayer: new KubectlV29Layer(this, 'kubectl'),
});
// apply a kubernetes manifest to the cluster
cluster.addManifest('mypod', {
apiVersion: 'v1',
kind: 'Pod',
metadata: { name: 'mypod' },
spec: {
containers: [
{
name: 'hello',
image: 'paulbouwer/hello-kubernetes:1.5',
ports: [ { containerPort: 8080 } ],
},
],
},
});
The following is a qualitative diagram of the various possible components involved in the cluster deployment.
+-----------------------------------------------+ +-----------------+
| EKS Cluster | kubectl | |
| ----------- |<-------------+| Kubectl Handler |
| | | |
| | +-----------------+
| +--------------------+ +-----------------+ |
| | | | | |
| | Managed Node Group | | Fargate Profile | | +-----------------+
| | | | | | | |
| +--------------------+ +-----------------+ | | Cluster Handler |
| | | |
+-----------------------------------------------+ +-----------------+
^ ^ +
| | |
| connect self managed capacity | | aws-sdk
| | create/update/delete |
+ | v
+--------------------+ + +-------------------+
| | --------------+| eks.amazonaws.com |
| Auto Scaling Group | +-------------------+
| |
+--------------------+
In a nutshell:
EKS Cluster
- The cluster endpoint created by EKS.Managed Node Group
- EC2 worker nodes managed by EKS.Fargate Profile
- Fargate worker nodes managed by EKS.Auto Scaling Group
- EC2 worker nodes managed by the user.KubectlHandler
- Lambda function for invokingkubectl
commands on the cluster - created by CDK.ClusterHandler
- Lambda function for interacting with EKS API to manage the cluster lifecycle - created by CDK.
A more detailed breakdown of each is provided further down this README.
Creating a new cluster is done using the Cluster
or FargateCluster
constructs. The only required property is the kubernetes version
.
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
});
You can also use FargateCluster
to provision a cluster that uses only fargate workers.
new eks.FargateCluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
});
NOTE: Only 1 cluster per stack is supported. If you have a use-case for multiple clusters per stack, or would like to understand more about this limitation, see #10073.
Below you'll find a few important cluster configuration options. First of which is Capacity. Capacity is the amount and the type of worker nodes that are available to the cluster for deploying resources. Amazon EKS offers 3 ways of configuring capacity, which you can combine as you like:
Amazon EKS managed node groups automate the provisioning and lifecycle management of nodes (Amazon EC2 instances) for Amazon EKS Kubernetes clusters. With Amazon EKS managed node groups, you don’t need to separately provision or register the Amazon EC2 instances that provide compute capacity to run your Kubernetes applications. You can create, update, or terminate nodes for your cluster with a single operation. Nodes run using the latest Amazon EKS optimized AMIs in your AWS account while node updates and terminations gracefully drain nodes to ensure that your applications stay available.
For more details visit Amazon EKS Managed Node Groups.
Managed Node Groups are the recommended way to allocate cluster capacity.
By default, this library will allocate a managed node group with 2 m5.large instances (this instance type suits most common use-cases, and is good value for money).
At cluster instantiation time, you can customize the number of instances and their type:
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
defaultCapacity: 5,
defaultCapacityInstance: ec2.InstanceType.of(ec2.InstanceClass.M5, ec2.InstanceSize.SMALL),
});
To access the node group that was created on your behalf, you can use cluster.defaultNodegroup
.
Additional customizations are available post instantiation. To apply them, set the default capacity to 0, and use the cluster.addNodegroupCapacity
method:
const cluster = new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
defaultCapacity: 0,
});
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
minSize: 4,
diskSize: 100,
amiType: eks.NodegroupAmiType.AL2_X86_64_GPU,
});
To set node taints, you can set taints
option.
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
taints: [
{
effect: eks.TaintEffect.NO_SCHEDULE,
key: 'foo',
value: 'bar',
},
],
});
To define the maximum number of instances which can be simultaneously replaced in a node group during a version update you can set maxUnavailable
or maxUnavailablePercentage
options.
For more details visit Updating a managed node group
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
maxSize: 5,
maxUnavailable: 2,
});
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
maxUnavailablePercentage: 33,
});
NOTE: If you add instances with the inferentia class (
inf1
orinf2
) or trainium class (trn1
ortrn1n
) the neuron plugin will be automatically installed in the kubernetes cluster.
Node groups are available with IPv6 configured networks. For custom roles assigned to node groups additional permissions are necessary in order for pods to obtain an IPv6 address. The default node role will include these permissions.
For more details visit Configuring the Amazon VPC CNI plugin for Kubernetes to use IAM roles for service accounts
const ipv6Management = new iam.PolicyDocument({
statements: [new iam.PolicyStatement({
resources: ['arn:aws:ec2:*:*:network-interface/*'],
actions: [
'ec2:AssignIpv6Addresses',
'ec2:UnassignIpv6Addresses',
],
})],
});
const eksClusterNodeGroupRole = new iam.Role(this, 'eksClusterNodeGroupRole', {
roleName: 'eksClusterNodeGroupRole',
assumedBy: new iam.ServicePrincipal('ec2.amazonaws.com'),
managedPolicies: [
iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEKSWorkerNodePolicy'),
iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEC2ContainerRegistryReadOnly'),
iam.ManagedPolicy.fromAwsManagedPolicyName('AmazonEKS_CNI_Policy'),
],
inlinePolicies: {
ipv6Management,
},
});
const cluster = new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
defaultCapacity: 0,
});
cluster.addNodegroupCapacity('custom-node-group', {
instanceTypes: [new ec2.InstanceType('m5.large')],
minSize: 2,
diskSize: 100,
nodeRole: eksClusterNodeGroupRole,
});
Use capacityType
to create managed node groups comprised of spot instances. To maximize the availability of your applications while using
Spot Instances, we recommend that you configure a Spot managed node group to use multiple instance types with the instanceTypes
property.
For more details visit Managed node group capacity types.
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('extra-ng-spot', {
instanceTypes: [
new ec2.InstanceType('c5.large'),
new ec2.InstanceType('c5a.large'),
new ec2.InstanceType('c5d.large'),
],
minSize: 3,
capacityType: eks.CapacityType.SPOT,
});
You can specify a launch template that the node group will use. For example, this can be useful if you want to use a custom AMI or add custom user data.
When supplying a custom user data script, it must be encoded in the MIME multi-part archive format, since Amazon EKS merges with its own user data. Visit the Launch Template Docs for mode details.
declare const cluster: eks.Cluster;
const userData = `MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="==MYBOUNDARY=="
--==MYBOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"
#!/bin/bash
echo "Running custom user data script"
--==MYBOUNDARY==--\\
`;
const lt = new ec2.CfnLaunchTemplate(this, 'LaunchTemplate', {
launchTemplateData: {
instanceType: 't3.small',
userData: Fn.base64(userData),
},
});
cluster.addNodegroupCapacity('extra-ng', {
launchTemplateSpec: {
id: lt.ref,
version: lt.attrLatestVersionNumber,
},
});
Note that when using a custom AMI, Amazon EKS doesn't merge any user data. Which means you do not need the multi-part encoding. and are responsible for supplying the required bootstrap commands for nodes to join the cluster.
In the following example, /ect/eks/bootstrap.sh
from the AMI will be used to bootstrap the node.
declare const cluster: eks.Cluster;
const userData = ec2.UserData.forLinux();
userData.addCommands(
'set -o xtrace',
`/etc/eks/bootstrap.sh ${cluster.clusterName}`,
);
const lt = new ec2.CfnLaunchTemplate(this, 'LaunchTemplate', {
launchTemplateData: {
imageId: 'some-ami-id', // custom AMI
instanceType: 't3.small',
userData: Fn.base64(userData.render()),
},
});
cluster.addNodegroupCapacity('extra-ng', {
launchTemplateSpec: {
id: lt.ref,
version: lt.attrLatestVersionNumber,
},
});
You may specify one instanceType
in the launch template or multiple instanceTypes
in the node group, but not both.
For more details visit Launch Template Support.
Graviton 2 instance types are supported including c6g
, m6g
, r6g
and t4g
.
Graviton 3 instance types are supported including c7g
.
When you rename the cluster name and redeploy the stack, the cluster replacement will be triggered and
the existing one will be deleted after the new one is provisioned. As the cluster resource ARN has been changed,
the cluster resource handler would not be able to delete the old one as the resource ARN in the IAM policy
has been changed. As a workaround, you need to add a temporary policy to the cluster admin role for
successful replacement. Consider this example if you are renaming the cluster from foo
to bar
:
const cluster = new eks.Cluster(this, 'cluster-to-rename', {
clusterName: 'foo', // rename this to 'bar'
version: eks.KubernetesVersion.V1_29,
});
// allow the cluster admin role to delete the cluster 'foo'
cluster.adminRole.addToPolicy(new iam.PolicyStatement({
actions: ['eks:DeleteCluster'],
resources: [
Stack.of(this).formatArn({ service: 'eks', resource: 'cluster', resourceName: 'foo' }),
]
}))
AWS Fargate is a technology that provides on-demand, right-sized compute capacity for containers. With AWS Fargate, you no longer have to provision, configure, or scale groups of virtual machines to run containers. This removes the need to choose server types, decide when to scale your node groups, or optimize cluster packing.
You can control which pods start on Fargate and how they run with Fargate Profiles, which are defined as part of your Amazon EKS cluster.
See Fargate Considerations in the AWS EKS User Guide.
You can add Fargate Profiles to any EKS cluster defined in your CDK app
through the addFargateProfile()
method. The following example adds a profile
that will match all pods from the "default" namespace:
declare const cluster: eks.Cluster;
cluster.addFargateProfile('MyProfile', {
selectors: [ { namespace: 'default' } ],
});
You can also directly use the FargateProfile
construct to create profiles under different scopes:
declare const cluster: eks.Cluster;
new eks.FargateProfile(this, 'MyProfile', {
cluster,
selectors: [ { namespace: 'default' } ],
});
To create an EKS cluster that only uses Fargate capacity, you can use FargateCluster
.
The following code defines an Amazon EKS cluster with a default Fargate Profile that matches all pods from the "kube-system" and "default" namespaces. It is also configured to run CoreDNS on Fargate.
const cluster = new eks.FargateCluster(this, 'MyCluster', {
version: eks.KubernetesVersion.V1_29,
});
FargateCluster
will create a default FargateProfile
which can be accessed via the cluster's defaultProfile
property. The created profile can also be customized by passing options as with addFargateProfile
.
NOTE: Classic Load Balancers and Network Load Balancers are not supported on pods running on Fargate. For ingress, we recommend that you use the ALB Ingress Controller on Amazon EKS (minimum version v1.1.4).
Another way of allocating capacity to an EKS cluster is by using self-managed nodes. EC2 instances that are part of the auto-scaling group will serve as worker nodes for the cluster. This type of capacity is also commonly referred to as EC2 Capacity* or EC2 Nodes.
For a detailed overview please visit Self Managed Nodes.
Creating an auto-scaling group and connecting it to the cluster is done using the cluster.addAutoScalingGroupCapacity
method:
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('frontend-nodes', {
instanceType: new ec2.InstanceType('t2.medium'),
minCapacity: 3,
vpcSubnets: { subnetType: ec2.SubnetType.PUBLIC },
});
To connect an already initialized auto-scaling group, use the cluster.connectAutoScalingGroupCapacity()
method:
declare const cluster: eks.Cluster;
declare const asg: autoscaling.AutoScalingGroup;
cluster.connectAutoScalingGroupCapacity(asg, {});
To connect a self-managed node group to an imported cluster, use the cluster.connectAutoScalingGroupCapacity()
method:
declare const cluster: eks.Cluster;
declare const asg: autoscaling.AutoScalingGroup;
const importedCluster = eks.Cluster.fromClusterAttributes(this, 'ImportedCluster', {
clusterName: cluster.clusterName,
clusterSecurityGroupId: cluster.clusterSecurityGroupId,
});
importedCluster.connectAutoScalingGroupCapacity(asg, {});
In both cases, the cluster security group will be automatically attached to the auto-scaling group, allowing for traffic to flow freely between managed and self-managed nodes.
Note: The default
updateType
for auto-scaling groups does not replace existing nodes. Since security groups are determined at launch time, self-managed nodes that were provisioned with version1.78.0
or lower, will not be updated. To apply the new configuration on all your self-managed nodes, you'll need to replace the nodes using theUpdateType.REPLACING_UPDATE
policy for theupdateType
property.
You can customize the /etc/eks/boostrap.sh script, which is responsible
for bootstrapping the node to the EKS cluster. For example, you can use kubeletExtraArgs
to add custom node labels or taints.
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('spot', {
instanceType: new ec2.InstanceType('t3.large'),
minCapacity: 2,
bootstrapOptions: {
kubeletExtraArgs: '--node-labels foo=bar,goo=far',
awsApiRetryAttempts: 5,
},
});
To disable bootstrapping altogether (i.e. to fully customize user-data), set bootstrapEnabled
to false
.
You can also configure the cluster to use an auto-scaling group as the default capacity:
const cluster = new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
defaultCapacityType: eks.DefaultCapacityType.EC2,
});
This will allocate an auto-scaling group with 2 m5.large instances (this instance type suits most common use-cases, and is good value for money).
To access the AutoScalingGroup
that was created on your behalf, you can use cluster.defaultCapacity
.
You can also independently create an AutoScalingGroup
and connect it to the cluster using the cluster.connectAutoScalingGroupCapacity
method:
declare const cluster: eks.Cluster;
declare const asg: autoscaling.AutoScalingGroup;
cluster.connectAutoScalingGroupCapacity(asg, {});
This will add the necessary user-data to access the apiserver and configure all connections, roles, and tags needed for the instances in the auto-scaling group to properly join the cluster.
When using self-managed nodes, you can configure the capacity to use spot instances, greatly reducing capacity cost.
To enable spot capacity, use the spotPrice
property:
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('spot', {
spotPrice: '0.1094',
instanceType: new ec2.InstanceType('t3.large'),
maxCapacity: 10,
});
Spot instance nodes will be labeled with
lifecycle=Ec2Spot
and tainted withPreferNoSchedule
.
The AWS Node Termination Handler DaemonSet
will be
installed from Amazon EKS Helm chart repository on these nodes.
The termination handler ensures that the Kubernetes control plane responds appropriately to events that
can cause your EC2 instance to become unavailable, such as EC2 maintenance events
and EC2 Spot interruptions and helps gracefully stop all pods running on spot nodes that are about to be
terminated.
Handler Version: 1.7.0
Chart Version: 0.9.5
To disable the installation of the termination handler, set the spotInterruptHandler
property to false
. This applies both to addAutoScalingGroupCapacity
and connectAutoScalingGroupCapacity
.
Bottlerocket is a Linux-based open-source operating system that is purpose-built by Amazon Web Services for running containers on virtual machines or bare metal hosts.
Bottlerocket
is supported when using managed nodegroups or self-managed auto-scaling groups.
To create a Bottlerocket managed nodegroup:
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('BottlerocketNG', {
amiType: eks.NodegroupAmiType.BOTTLEROCKET_X86_64,
});
The following example will create an auto-scaling group of 2 t3.small
Linux instances running with the Bottlerocket
AMI.
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('BottlerocketNodes', {
instanceType: new ec2.InstanceType('t3.small'),
minCapacity: 2,
machineImageType: eks.MachineImageType.BOTTLEROCKET,
});
The specific Bottlerocket AMI variant will be auto selected according to the k8s version for the x86_64
architecture.
For example, if the Amazon EKS cluster version is 1.17
, the Bottlerocket AMI variant will be auto selected as
aws-k8s-1.17
behind the scene.
See Variants for more details.
Please note Bottlerocket does not allow to customize bootstrap options and bootstrapOptions
properties is not supported when you create the Bottlerocket
capacity.
To create a Bottlerocket managed nodegroup with Nvidia-based EC2 instance types use the BOTTLEROCKET_X86_64_NVIDIA
or
BOTTLEROCKET_ARM_64_NVIDIA
AMIs:
declare const cluster: eks.Cluster;
cluster.addNodegroupCapacity('BottlerocketNvidiaNG', {
amiType: eks.NodegroupAmiType.BOTTLEROCKET_X86_64_NVIDIA,
instanceTypes: [new ec2.InstanceType('g4dn.xlarge')],
});
For more details about Bottlerocket, see Bottlerocket FAQs and Bottlerocket Open Source Blog.
When you create a new cluster, Amazon EKS creates an endpoint for the managed Kubernetes API server that you use to communicate with your cluster (using Kubernetes management tools such as kubectl
)
By default, this API server endpoint is public to the internet, and access to the API server is secured using a combination of AWS Identity and Access Management (IAM) and native Kubernetes Role Based Access Control (RBAC).
You can configure the cluster endpoint access by using the endpointAccess
property:
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
endpointAccess: eks.EndpointAccess.PRIVATE, // No access outside of your VPC.
});
The default value is eks.EndpointAccess.PUBLIC_AND_PRIVATE
. Which means the cluster endpoint is accessible from outside of your VPC, but worker node traffic and kubectl
commands issued by this library stay within your VPC.
Some Kubernetes resources are commonly implemented on AWS with the help of the ALB Controller.
From the docs:
AWS Load Balancer Controller is a controller to help manage Elastic Load Balancers for a Kubernetes cluster.
- It satisfies Kubernetes Ingress resources by provisioning Application Load Balancers.
- It satisfies Kubernetes Service resources by provisioning Network Load Balancers.
To deploy the controller on your EKS cluster, configure the albController
property:
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
albController: {
version: eks.AlbControllerVersion.V2_6_2,
},
});
The albController
requires defaultCapacity
or at least one nodegroup. If there's no defaultCapacity
or available
nodegroup for the cluster, the albController
deployment would fail.
Querying the controller pods should look something like this:
❯ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-76bd6c7586-d929p 1/1 Running 0 109m
aws-load-balancer-controller-76bd6c7586-fqxph 1/1 Running 0 109m
...
...
Every Kubernetes manifest that utilizes the ALB Controller is effectively dependant on the controller. If the controller is deleted before the manifest, it might result in dangling ELB/ALB resources. Currently, the EKS construct library does not detect such dependencies, and they should be done explicitly.
For example:
declare const cluster: eks.Cluster;
const manifest = cluster.addManifest('manifest', {/* ... */});
if (cluster.albController) {
manifest.node.addDependency(cluster.albController);
}
You can specify the VPC of the cluster using the vpc
and vpcSubnets
properties:
declare const vpc: ec2.Vpc;
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
vpc,
vpcSubnets: [{ subnetType: ec2.SubnetType.PRIVATE_WITH_EGRESS }],
});
Note: Isolated VPCs (i.e with no internet access) are not fully supported. See #12171. Check out this aws-cdk-example for reference.
If you do not specify a VPC, one will be created on your behalf, which you can then access via cluster.vpc
. The cluster VPC will be associated to any EKS managed capacity (i.e Managed Node Groups and Fargate Profiles).
Please note that the vpcSubnets
property defines the subnets where EKS will place the control plane ENIs. To choose
the subnets where EKS will place the worker nodes, please refer to the Provisioning clusters section above.
If you allocate self managed capacity, you can specify which subnets should the auto-scaling group use:
declare const vpc: ec2.Vpc;
declare const cluster: eks.Cluster;
cluster.addAutoScalingGroupCapacity('nodes', {
vpcSubnets: { subnets: vpc.privateSubnets },
instanceType: new ec2.InstanceType('t2.medium'),
});
There are two additional components you might want to provision within the VPC.
The KubectlHandler
is a Lambda function responsible to issuing kubectl
and helm
commands against the cluster when you add resource manifests to the cluster.
The handler association to the VPC is derived from the endpointAccess
configuration. The rule of thumb is: If the cluster VPC can be associated, it will be.
Breaking this down, it means that if the endpoint exposes private access (via EndpointAccess.PRIVATE
or EndpointAccess.PUBLIC_AND_PRIVATE
), and the VPC contains private subnets, the Lambda function will be provisioned inside the VPC and use the private subnets to interact with the cluster. This is the common use-case.
If the endpoint does not expose private access (via EndpointAccess.PUBLIC
) or the VPC does not contain private subnets, the function will not be provisioned within the VPC.
If your use-case requires control over the IAM role that the KubeCtl Handler assumes, a custom role can be passed through the ClusterProps (as kubectlLambdaRole
) of the EKS Cluster construct.
The ClusterHandler
is a set of Lambda functions (onEventHandler
, isCompleteHandler
) responsible for interacting with the EKS API in order to control the cluster lifecycle. To provision these functions inside the VPC, set the placeClusterHandlerInVpc
property to true
. This will place the functions inside the private subnets of the VPC based on the selection strategy specified in the vpcSubnets
property.
You can configure the environment of the Cluster Handler functions by specifying it at cluster instantiation. For example, this can be useful in order to configure an http proxy:
declare const proxyInstanceSecurityGroup: ec2.SecurityGroup;
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
clusterHandlerEnvironment: {
https_proxy: 'http://proxy.myproxy.com',
},
/**
* If the proxy is not open publicly, you can pass a security group to the
* Cluster Handler Lambdas so that it can reach the proxy.
*/
clusterHandlerSecurityGroup: proxyInstanceSecurityGroup,
});
You can optionally choose to configure your cluster to use IPv6 using the ipFamily
definition for your cluster. Note that this will require the underlying subnets to have an associated IPv6 CIDR.
declare const vpc: ec2.Vpc;
function associateSubnetWithV6Cidr(vpc: ec2.Vpc, count: number, subnet: ec2.ISubnet) {
const cfnSubnet = subnet.node.defaultChild as ec2.CfnSubnet;
cfnSubnet.ipv6CidrBlock = Fn.select(count, Fn.cidr(Fn.select(0, vpc.vpcIpv6CidrBlocks), 256, (128 - 64).toString()));
cfnSubnet.assignIpv6AddressOnCreation = true;
}
// make an ipv6 cidr
const ipv6cidr = new ec2.CfnVPCCidrBlock(this, 'CIDR6', {
vpcId: vpc.vpcId,
amazonProvidedIpv6CidrBlock: true,
});
// connect the ipv6 cidr to all vpc subnets
let subnetcount = 0;
const subnets = vpc.publicSubnets.concat(vpc.privateSubnets);
for (let subnet of subnets) {
// Wait for the ipv6 cidr to complete
subnet.node.addDependency(ipv6cidr);
associateSubnetWithV6Cidr(vpc, subnetcount, subnet);
subnetcount = subnetcount + 1;
}
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
vpc: vpc,
ipFamily: eks.IpFamily.IP_V6,
vpcSubnets: [{ subnets: vpc.publicSubnets }],
});
The resources are created in the cluster by running kubectl apply
from a python lambda function.
By default, CDK will create a new python lambda function to apply your k8s manifests. If you want to use an existing kubectl provider function, for example with tight trusted entities on your IAM Roles - you can import the existing provider and then use the imported provider when importing the cluster:
const handlerRole = iam.Role.fromRoleArn(this, 'HandlerRole', 'arn:aws:iam::123456789012:role/lambda-role');
// get the serivceToken from the custom resource provider
const functionArn = lambda.Function.fromFunctionName(this, 'ProviderOnEventFunc', 'ProviderframeworkonEvent-XXX').functionArn;
const kubectlProvider = eks.KubectlProvider.fromKubectlProviderAttributes(this, 'KubectlProvider', {
functionArn,
kubectlRoleArn: 'arn:aws:iam::123456789012:role/kubectl-role',
handlerRole,
});
const cluster = eks.Cluster.fromClusterAttributes(this, 'Cluster', {
clusterName: 'cluster',
kubectlProvider,
});
You can configure the environment of this function by specifying it at cluster instantiation. For example, this can be useful in order to configure an http proxy:
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
kubectlEnvironment: {
'http_proxy': 'http://proxy.myproxy.com',
},
});
The kubectl handler uses kubectl
, helm
and the aws
CLI in order to
interact with the cluster. These are bundled into AWS Lambda layers included in
the @aws-cdk/lambda-layer-awscli
and @aws-cdk/lambda-layer-kubectl
modules.
The version of kubectl used must be compatible with the Kubernetes version of the
cluster. kubectl is supported within one minor version (older or newer) of Kubernetes
(see Kubernetes version skew policy).
Depending on which version of kubernetes you're targeting, you will need to use one of
the @aws-cdk/lambda-layer-kubectl-vXY
packages.
import { KubectlV29Layer } from '@aws-cdk/lambda-layer-kubectl-v29';
const cluster = new eks.Cluster(this, 'hello-eks', {
version: eks.KubernetesVersion.V1_29,
kubectlLayer: new KubectlV29Layer(this, 'kubectl'),
});
You can also specify a custom lambda.LayerVersion
if you wish to use a
different version of these tools, or a version not available in any of the
@aws-cdk/lambda-layer-kubectl-vXY
packages. The handler expects the layer to
include the following two executables:
helm/helm
kubectl/kubectl
See more information in the Dockerfile for @aws-cdk/lambda-layer-awscli and the Dockerfile for @aws-cdk/lambda-layer-kubectl.
const layer = new lambda.LayerVersion(this, 'KubectlLayer', {
code: lambda.Code.fromAsset('layer.zip'),
});
Now specify when the cluster is defined:
declare const layer: lambda.LayerVersion;
declare const vpc: ec2.Vpc;
const cluster1 = new eks.Cluster(this, 'MyCluster', {
kubectlLayer: layer,
vpc,
clusterName: 'cluster-name',
version: eks.KubernetesVersion.V1_29,
});
// or
const cluster2 = eks.Cluster.fromClusterAttributes(this, 'MyCluster', {
kubectlLayer: layer,
vpc,
clusterName: 'cluster-name',
});
By default, the kubectl provider is configured with 1024MiB of memory. You can use the kubectlMemory
option to specify the memory size for the AWS Lambda function:
new eks.Cluster(this, 'MyCluster', {
kubectlMemory: Size.gibibytes(4),
version: eks.KubernetesVersion.V1_29,
});
// or
declare const vpc: ec2.Vpc;
eks.Cluster.fromClusterAttributes(this, 'MyCluster', {
kubectlMemory: Size.gibibytes(4),
vpc,
clusterName: 'cluster-name',
});
Instance types with ARM64
architecture are supported in both managed nodegroup and self-managed capacity. Simply specify an ARM64 instanceType
(such as m6g.medium
), and the latest
Amazon Linux 2 AMI for ARM64 will be automatically selected.
declare const cluster: eks.Cluster;
// add a managed ARM64 nodegroup
cluster.addNodegroupCapacity('extra-ng-arm', {
instanceTypes: [new ec2.InstanceType('m6g.medium')],
minSize: 2,
});
// add a self-managed ARM64 nodegroup
cluster.addAutoScalingGroupCapacity('self-ng-arm', {
instanceType: new ec2.InstanceType('m6g.medium'),
minCapacity: 2,
})
When you create a cluster, you can specify a mastersRole
. The Cluster
construct will associate this role with the system:masters
RBAC group, giving it super-user access to the cluster.
declare const role: iam.Role;
new eks.Cluster(this, 'HelloEKS', {
version: eks.KubernetesVersion.V1_29,
mastersRole: role,
});
In order to interact with your cluster through kubectl
, you can use the aws eks update-kubeconfig
AWS CLI command
to configure your local kubeconfig. The EKS module will define a CloudFormation output in your stack which contains the command to run. For example:
Outputs:
ClusterConfigCommand43AAE40F = aws eks update-kubeconfig --name cluster-xxxxx --role-arn arn:aws:iam::112233445566:role/yyyyy
Execute the aws eks update-kubeconfig ...
command in your terminal to create or update a local kubeconfig context:
$ aws eks update-kubeconfig --name cluster-xxxxx --role-arn arn:aws:iam::112233445566:role/yyyyy
Added new context arn:aws:eks:rrrrr:112233445566:cluster/cluster-xxxxx to /home/boom/.kube/config
And now you can simply use kubectl
:
$ kubectl get all -n kube-system
NAME READY STATUS RESTARTS AGE
pod/aws-node-fpmwv 1/1 Running 0 21m
pod/aws-node-m9htf 1/1 Running 0 21m
pod/coredns-5cb4fb54c7-q222j 1/1 Running 0 23m
pod/coredns-5cb4fb54c7-v9nxx 1/1 Running 0 23m
...
If you do not specify it, you won't have access to the cluster from outside of the CDK application.
Note that
cluster.addManifest
andnew KubernetesManifest
will still work.
When you create an Amazon EKS cluster, envelope encryption of Kubernetes secrets using the AWS Key Management Service (AWS KMS) can be enabled. The documentation on creating a cluster can provide more details about the customer master key (CMK) that can be used for the encryption.
You can use the secretsEncryptionKey
to configure which key the cluster will use to encrypt Kubernetes secrets. By default, an AWS Managed key will be used.
This setting can only be specified when the cluster is created and cannot be updated.
const secretsKey = new kms.Key(this, 'SecretsKey');
const cluster = new eks.Cluster(this, 'MyCluster', {
secretsEncryptionKey: secretsKey,
version: eks.KubernetesVersion.V1_29,
});
You can also use a similar configuration for running a cluster built using the FargateCluster construct.
const secretsKey = new kms.Key(this, 'SecretsKey');
const cluster = new eks.FargateCluster(this, 'MyFargateCluster', {
secretsEncryptionKey: secretsKey,
version: eks.KubernetesVersion.V1_29,
});
The Amazon Resource Name (ARN) for that CMK can be retrieved.
declare const cluster: eks.Cluster;
const clusterEncryptionConfigKeyArn = cluster.clusterEncryptionConfigKeyArn;
Amazon EKS provides several mechanism of securing the cluster and granting permissions to specific IAM users and roles.
As described in the Amazon EKS User Guide, you can map AWS IAM users and roles to Kubernetes Role-based access control (RBAC).
The Amazon EKS construct manages the aws-auth ConfigMap
Kubernetes resource on your behalf and exposes an API through the cluster.awsAuth
for mapping
users, roles and accounts.
Furthermore, when auto-scaling group capacity is added to the cluster, the IAM instance role of the auto-scaling group will be automatically mapped to RBAC so nodes can connect to the cluster. No manual mapping is required.
For example, let's say you want to grant an IAM user administrative privileges on your cluster:
declare const cluster: eks.Cluster;
const adminUser = new iam.User(this, 'Admin');
cluster.awsAuth.addUserMapping(adminUser, { groups: [ 'system:masters' ]});
A convenience method for mapping a role to the system:masters
group is also available:
declare const cluster: eks.Cluster;
declare const role: iam.Role;
cluster.awsAuth.addMastersRole(role);
To access the Kubernetes resources from the console, make sure your viewing principal is defined
in the aws-auth
ConfigMap. Some options to consider:
import { KubectlV29Layer } from '@aws-cdk/lambda-layer-kubectl-v29';
declare const cluster: eks.Cluster;
declare const your_current_role: iam.Role;
declare const vpc: ec2.Vpc;
// Option 1: Add your current assumed IAM role to system:masters. Make sure to add relevant policies.
cluster.awsAuth.addMastersRole(your_current_role);
your_current_role.addToPolicy(new iam.PolicyStatement({
actions: [
'eks:AccessKubernetesApi',
'eks:Describe*',
'eks:List*',
],
resources: [ cluster.clusterArn ],
}));
// Option 2: create your custom mastersRole with scoped assumeBy arn as the Cluster prop. Switch to this role from the AWS console.
import { KubectlV29Layer } from '@aws-cdk/lambda-layer-kubectl-v29';
declare const vpc: ec2.Vpc;
const mastersRole = new iam.Role(this, 'MastersRole', {
assumedBy: new iam.ArnPrincipal('arn_for_trusted_principal'),
});
const cluster = new eks.Cluster(this, 'EksCluster', {
vpc,
version: eks.KubernetesVersion.V1_29,
kubectlLayer: new KubectlV29Layer(this, 'KubectlLayer'),
mastersRole,
});
mastersRole.addToPolicy(new iam.PolicyStatement({
actions: [
'eks:AccessKubernetesApi',
'eks:Describe*',
'eks:List*',
],
resources: [ cluster.clusterArn ],
}));
// Option 3: Create a new role that allows the account root principal to assume. Add this role in the `system:masters` and witch to this role from the AWS console.
declare const cluster: eks.Cluster;
const consoleReadOnlyRole = new iam.Role(this, 'ConsoleReadOnlyRole', {
assumedBy: new iam.ArnPrincipal('arn_for_trusted_principal'),
});
consoleReadOnlyRole.addToPolicy(new iam.PolicyStatement({
actions: [
'eks:AccessKubernetesApi',
'eks:Describe*',
'eks:List*',
],
resources: [ cluster.clusterArn ],
}));
// Add this role to system:masters RBAC group
cluster.awsAuth.addMastersRole(consoleReadOnlyRole)
When you create an Amazon EKS cluster, a cluster security group is automatically created as well. This security group is designed to allow all traffic from the control plane and managed node groups to flow freely between each other.
The ID for that security group can be retrieved after creating the cluster.
declare const cluster: eks.Cluster;
const clusterSecurityGroupId = cluster.clusterSecurityGroupId;
If you want to be able to SSH into your worker nodes, you must already have an SSH key in the region you're connecting to and pass it when you add capacity to the cluster. You must also be able to connect to the hosts (meaning they must have a public IP and you should be allowed to connect to them on port 22):
See SSH into nodes for a code example.
If you want to SSH into nodes in a private subnet, you should set up a bastion host in a public subnet. That setup is recommended, but is unfortunately beyond the scope of this documentation.
With services account you can provide Kubernetes Pods access to AWS resources.
declare const cluster: eks.Cluster;
// add service account
const serviceAccount = cluster.addServiceAccount('MyServiceAccount');
const bucket = new s3.Bucket(this, 'Bucket');
bucket.grantReadWrite(serviceAccount);
const mypod = cluster.addManifest('mypod', {
apiVersion: 'v1',
kind: 'Pod',
metadata: { name: 'mypod' },
spec: {
serviceAccountName: serviceAccount.serviceAccountName,
containers: [
{
name: 'hello',
image: 'paulbouwer/hello-kubernetes:1.5',
ports: [ { containerPort: 8080 } ],
},
],
},
});
// create the resource after the service account.
mypod.node.addDependency(serviceAccount);
// print the IAM role arn for this service account
new CfnOutput(this, 'ServiceAccountIamRole', { value: serviceAccount.role.roleArn });
Note that using serviceAccount.serviceAccountName
above does not translate into a resource dependency.
This is why an explicit dependency is needed. See #9910 for more details.
It is possible to pass annotations and labels to the service account.
declare const cluster: eks.Cluster;
// add service account with annotations and labels
const serviceAccount = cluster.addServiceAccount('MyServiceAccount', {
annotations: {
'eks.amazonaws.com/sts-regional-endpoints': 'false',
},
labels: {
'some-label': 'with-some-value',
},
});
You can also add service accounts to existing clusters.
To do so, pass the openIdConnectProvider
property when you import the cluster into the application.
// you can import an existing provider
const provider = eks.OpenIdConnectProvider.fromOpenIdConnectProviderArn(this, 'Provider', 'arn:aws:iam::123456:oidc-provider/oidc.eks.eu-west-1.amazonaws.com/id/AB123456ABC');
// or create a new one using an existing issuer url
declare const issuerUrl: string;
const provider2 = new eks.OpenIdConnectProvider(this, 'Provider', {
url: issuerUrl,
});
const cluster = eks.Cluster.fromClusterAttributes(this, 'MyCluster', {
clusterName: 'Cluster',
openIdConnectProvider: provider,
kubectlRoleArn: 'arn:aws:iam::123456:role/service-role/k8sservicerole',
});
const serviceAccount = cluster.addServiceAccount('MyServiceAccount');
const bucket = new s3.Bucket(this, 'Bucket');
bucket.grantReadWrite(serviceAccount);
Note that adding service accounts requires running kubectl
commands against the cluster.
This means you must also pass the kubectlRoleArn
when importing the cluster.
See Using existing Clusters.
The library supports several popular resource deployment mechanisms, among which are:
The KubernetesManifest
construct or cluster.addManifest
method can be used
to apply Kubernetes resource manifests to this cluster.
When using
cluster.addManifest
, the manifest construct is defined within the cluster's stack scope. If the manifest contains attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. To avoid this, directly usenew KubernetesManifest
to create the manifest in the scope of the other stack.
The following examples will deploy the paulbouwer/hello-kubernetes service on the cluster:
declare const cluster: eks.Cluster;
const appLabel = { app: "hello-kubernetes" };
const deployment = {
apiVersion: "apps/v1",
kind: "Deployment",
metadata: { name: "hello-kubernetes" },
spec: {
replicas: 3,
selector: { matchLabels: appLabel },
template: {
metadata: { labels: appLabel },
spec: {
containers: [
{
name: "hello-kubernetes",
image: "paulbouwer/hello-kubernetes:1.5",
ports: [ { containerPort: 8080 } ],
},
],
},
},
},
};
const service = {
apiVersion: "v1",
kind: "Service",
metadata: { name: "hello-kubernetes" },
spec: {
type: "LoadBalancer",
ports: [ { port: 80, targetPort: 8080 } ],
selector: appLabel,
}
};
// option 1: use a construct
new eks.KubernetesManifest(this, 'hello-kub', {
cluster,
manifest: [ deployment, service ],
});
// or, option2: use `addManifest`
cluster.addManifest('hello-kub', service, deployment);
The KubernetesManifest
construct can detect ingress resources inside your manifest and automatically add the necessary annotations
so they are picked up by the ALB Controller.
See Alb Controller
To that end, it offers the following properties:
ingressAlb
- Signal that the ingress detection should be done.ingressAlbScheme
- Which ALB scheme should be applied. Defaults tointernal
.
The following example will deploy the resource manifest hosting on remote server:
// This example is only available in TypeScript
import * as yaml from 'js-yaml';
import * as request from 'sync-request';
declare const cluster: eks.Cluster;
const manifestUrl = 'https://url/of/manifest.yaml';
const manifest = yaml.safeLoadAll(request('GET', manifestUrl).getBody());
cluster.addManifest('my-resource', manifest);
There are cases where Kubernetes resources must be deployed in a specific order. For example, you cannot define a resource in a Kubernetes namespace before the namespace was created.
You can represent dependencies between KubernetesManifest
s using
resource.node.addDependency()
:
declare const cluster: eks.Cluster;
const namespace = cluster.addManifest('my-namespace', {
apiVersion: 'v1',
kind: 'Namespace',
metadata: { name: 'my-app' },
});
const service = cluster.addManifest('my-service', {
metadata: {
name: 'myservice',
namespace: 'my-app',
},
spec: { }, // ...
});
service.node.addDependency(namespace); // will apply `my-namespace` before `my-service`.
NOTE: when a KubernetesManifest
includes multiple resources (either directly
or through cluster.addManifest()
) (e.g. cluster.addManifest('foo', r1, r2, r3,...)
), these resources will be applied as a single manifest via kubectl
and will be applied sequentially (the standard behavior in kubectl
).
Since Kubernetes manifests are implemented as CloudFormation resources in the
CDK. This means that if the manifest is deleted from your code (or the stack is
deleted), the next cdk deploy
will issue a kubectl delete
command and the
Kubernetes resources in that manifest will be deleted.
When a resource is deleted from a Kubernetes manifest, the EKS module will
automatically delete these resources by injecting a prune label to all
manifest resources. This label is then passed to kubectl apply --prune
.
Pruning is enabled by default but can be disabled through the prune
option
when a cluster is defined:
new eks.Cluster(this, 'MyCluster', {
version: eks.KubernetesVersion.V1_29,
prune: false,
});
The kubectl
CLI supports applying a manifest by skipping the validation.
This can be accomplished by setting the skipValidation
flag to true
in the KubernetesManifest
props.
declare const cluster: eks.Cluster;
new eks.KubernetesManifest(this, 'HelloAppWithoutValidation', {
cluster,
manifest: [{ foo: 'bar' }],
skipValidation: true,
});
The HelmChart
construct or cluster.addHelmChart
method can be used
to add Kubernetes resources to this cluster using Helm.
When using
cluster.addHelmChart
, the manifest construct is defined within the cluster's stack scope. If the manifest contains attributes from a different stack which depend on the cluster stack, a circular dependency will be created and you will get a synth time error. To avoid this, directly usenew HelmChart
to create the chart in the scope of the other stack.
The following example will install the NGINX Ingress Controller to your cluster using Helm.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'NginxIngress', {
cluster,
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
});
// or, option2: use `addHelmChart`
cluster.addHelmChart('NginxIngress', {
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
});
Helm charts will be installed and updated using helm upgrade --install
, where a few parameters
are being passed down (such as repo
, values
, version
, namespace
, wait
, timeout
, etc).
This means that if the chart is added to CDK with the same release name, it will try to update
the chart in the cluster.
Additionally, the chartAsset
property can be an aws-s3-assets.Asset
. This allows the use of local, private helm charts.
import * as s3Assets from 'aws-cdk-lib/aws-s3-assets';
declare const cluster: eks.Cluster;
const chartAsset = new s3Assets.Asset(this, 'ChartAsset', {
path: '/path/to/asset'
});
cluster.addHelmChart('test-chart', {
chartAsset: chartAsset,
});
Nested values passed to the values
parameter should be provided as a nested dictionary:
declare const cluster: eks.Cluster;
cluster.addHelmChart('ExternalSecretsOperator', {
chart: 'external-secrets',
release: 'external-secrets',
repository: 'https://charts.external-secrets.io',
namespace: 'external-secrets',
values: {
installCRDs: true,
webhook: {
port: 9443
}
},
});
Helm chart can come with Custom Resource Definitions (CRDs) defined that by default will be installed by helm as well. However in special cases it might be needed to skip the installation of CRDs, for that the property skipCrds
can be used.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'NginxIngress', {
cluster,
chart: 'nginx-ingress',
repository: 'https://helm.nginx.com/stable',
namespace: 'kube-system',
skipCrds: true,
});
OCI charts are also supported.
Also replace the ${VARS}
with appropriate values.
declare const cluster: eks.Cluster;
// option 1: use a construct
new eks.HelmChart(this, 'MyOCIChart', {
cluster,
chart: 'some-chart',
repository: 'oci://${ACCOUNT_ID}.dkr.ecr.${ACCOUNT_REGION}.amazonaws.com/${REPO_NAME}',
namespace: 'oci',
version: '0.0.1'
});
Helm charts are implemented as CloudFormation resources in CDK.
This means that if the chart is deleted from your code (or the stack is
deleted), the next cdk deploy
will issue a helm uninstall
command and the
Helm chart will be deleted.
When there is no release
defined, a unique ID will be allocated for the release based
on the construct path.
By default, all Helm charts will be installed concurrently. In some cases, this
could cause race conditions where two Helm charts attempt to deploy the same
resource or if Helm charts depend on each other. You can use
chart.node.addDependency()
in order to declare a dependency order between
charts:
declare const cluster: eks.Cluster;
const chart1 = cluster.addHelmChart('MyChart', {
chart: 'foo',
});
const chart2 = cluster.addHelmChart('MyChart', {
chart: 'bar',
});
chart2.node.addDependency(chart1);
CDK8s is an open-source library that enables Kubernetes manifest authoring using familiar programming languages. It is founded on the same technologies as the AWS CDK, such as constructs
and jsii
.
To learn more about cdk8s, visit the Getting Started tutorials.
The EKS module natively integrates with cdk8s and allows you to apply cdk8s charts on AWS EKS clusters via the cluster.addCdk8sChart
method.
In addition to cdk8s
, you can also use cdk8s+
, which provides higher level abstraction for the core kubernetes api objects.
You can think of it like the L2
constructs for Kubernetes. Any other cdk8s
based libraries are also supported, for example cdk8s-debore
.
To get started, add the following dependencies to your package.json
file:
"dependencies": {
"cdk8s": "^2.0.0",
"cdk8s-plus-25": "^2.0.0",
"constructs": "^10.0.0"
}
Note that here we are using cdk8s-plus-25
as we are targeting Kubernetes version 1.25.0. If you operate a different kubernetes version, you should
use the corresponding cdk8s-plus-XX
library.
See Select the appropriate cdk8s+ library
for more details.
Similarly to how you would create a stack by extending aws-cdk-lib.Stack
, we recommend you create a chart of your own that extends cdk8s.Chart
,
and add your kubernetes resources to it. You can use aws-cdk
construct attributes and properties inside your cdk8s
construct freely.
In this example we create a chart that accepts an s3.Bucket
and passes its name to a kubernetes pod as an environment variable.
+ my-chart.ts
import { aws_s3 as s3 } from 'aws-cdk-lib';
import * as constructs from 'constructs';
import * as cdk8s from 'cdk8s';
import * as kplus from 'cdk8s-plus-25';
export interface MyChartProps {
readonly bucket: s3.Bucket;
}
export class MyChart extends cdk8s.Chart {
constructor(scope: constructs.Construct, id: string, props: MyChartProps) {
super(scope, id);
new kplus.Pod(this, 'Pod', {
containers: [
{
image: 'my-image',
envVariables: {
BUCKET_NAME: kplus.EnvValue.fromValue(props.bucket.bucketName),
},
}
],
});
}
}
Then, in your AWS CDK app:
declare const cluster: eks.Cluster;
// some bucket..
const bucket = new s3.Bucket(this, 'Bucket');
// create a cdk8s chart and use `cdk8s.App` as the scope.
const myChart = new MyChart(new cdk8s.App(), 'MyChart', { bucket });
// add the cdk8s chart to the cluster
cluster.addCdk8sChart('my-chart', myChart);
You can also compose a few stock cdk8s+
constructs into your own custom construct. However, since mixing scopes between aws-cdk
and cdk8s
is currently not supported, the Construct
class
you'll need to use is the one from the constructs
module, and not from aws-cdk-lib
like you normally would.
This is why we used new cdk8s.App()
as the scope of the chart above.
import * as constructs from 'constructs';
import * as cdk8s from 'cdk8s';
import * as kplus from 'cdk8s-plus-25';
export interface LoadBalancedWebService {
readonly port: number;
readonly image: string;
readonly replicas: number;
}
const app = new cdk8s.App();
const chart = new cdk8s.Chart(app, 'my-chart');
export class LoadBalancedWebService extends constructs.Construct {
constructor(scope: constructs.Construct, id: string, props: LoadBalancedWebService) {
super(scope, id);
const deployment = new kplus.Deployment(chart, 'Deployment', {
replicas: props.replicas,
containers: [ new kplus.Container({ image: props.image }) ],
});
deployment.exposeViaService({
ports: [
{ port: props.port },
],
serviceType: kplus.ServiceType.LOAD_BALANCER,
});
}
}
If you find yourself unable to use cdk8s+
, or just like to directly use the k8s
native objects or CRD's, you can do so by manually importing them using the cdk8s-cli
.
See Importing kubernetes objects for detailed instructions.
The KubernetesPatch
construct can be used to update existing kubernetes
resources. The following example can be used to patch the hello-kubernetes
deployment from the example above with 5 replicas.
declare const cluster: eks.Cluster;
new eks.KubernetesPatch(this, 'hello-kub-deployment-label', {
cluster,
resourceName: "deployment/hello-kubernetes",
applyPatch: { spec: { replicas: 5 } },
restorePatch: { spec: { replicas: 3 } },
})
The KubernetesObjectValue
construct can be used to query for information about kubernetes objects,
and use that as part of your CDK application.
For example, you can fetch the address of a LoadBalancer
type service:
declare const cluster: eks.Cluster;
// query the load balancer address
const myServiceAddress = new eks.KubernetesObjectValue(this, 'LoadBalancerAttribute', {
cluster: cluster,
objectType: 'service',
objectName: 'my-service',
jsonPath: '.status.loadBalancer.ingress[0].hostname', // https://kubernetes.io/docs/reference/kubectl/jsonpath/
});
// pass the address to a lambda function
const proxyFunction = new lambda.Function(this, 'ProxyFunction', {
handler: 'index.handler',
code: lambda.Code.fromInline('my-code'),
runtime: lambda.Runtime.NODEJS_LATEST,
environment: {
myServiceAddress: myServiceAddress.value,
},
})
Specifically, since the above use-case is quite common, there is an easier way to access that information:
declare const cluster: eks.Cluster;
const loadBalancerAddress = cluster.getServiceLoadBalancerAddress('my-service');
The Amazon EKS library allows defining Kubernetes resources such as Kubernetes manifests and Helm charts on clusters that are not defined as part of your CDK app.
First, you'll need to "import" a cluster to your CDK app. To do that, use the
eks.Cluster.fromClusterAttributes()
static method:
const cluster = eks.Cluster.fromClusterAttributes(this, 'MyCluster', {
clusterName: 'my-cluster-name',
kubectlRoleArn: 'arn:aws:iam::1111111:role/iam-role-that-has-masters-access',
});
Then, you can use addManifest
or addHelmChart
to define resources inside
your Kubernetes cluster. For example:
declare const cluster: eks.Cluster;
cluster.addManifest('Test', {
apiVersion: 'v1',
kind: 'ConfigMap',
metadata: {
name: 'myconfigmap',
},
data: {
Key: 'value',
Another: '123454',
},
});
At the minimum, when importing clusters for kubectl
management, you will need
to specify:
clusterName
- the name of the cluster.kubectlRoleArn
- the ARN of an IAM role mapped to thesystem:masters
RBAC role. If the cluster you are importing was created using the AWS CDK, the CloudFormation stack has an output that includes an IAM role that can be used. Otherwise, you can create an IAM role and map it tosystem:masters
manually. The trust policy of this role should include the thearn:aws::iam::${accountId}:root
principal in order to allow the execution role of the kubectl resource to assume it.
If the cluster is configured with private-only or private and restricted public Kubernetes endpoint access, you must also specify:
kubectlSecurityGroupId
- the ID of an EC2 security group that is allowed connections to the cluster's control security group. For example, the EKS managed cluster security group.kubectlPrivateSubnetIds
- a list of private VPC subnets IDs that will be used to access the Kubernetes endpoint.
EKS supports cluster logging for 5 different types of events:
- API requests to the cluster.
- Cluster access via the Kubernetes API.
- Authentication requests into the cluster.
- State of cluster controllers.
- Scheduling decisions.
You can enable logging for each one separately using the clusterLogging
property. For example:
const cluster = new eks.Cluster(this, 'Cluster', {
// ...
version: eks.KubernetesVersion.V1_29,
clusterLogging: [
eks.ClusterLoggingTypes.API,
eks.ClusterLoggingTypes.AUTHENTICATOR,
eks.ClusterLoggingTypes.SCHEDULER,
],
});