From 6d74002aebb817c6abecd77b3318b40a46cc8072 Mon Sep 17 00:00:00 2001
From: awstools Creates a new trigger. Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job. Retrieves the metadata for a given job run. Job run history is accessible for 90 days for your workflow and job run. Retrieves the metadata for a given job run. Job run history is accessible for 365 days for your workflow and job run. Retrieves metadata for all runs of a given job definition.
+ * Updates a trigger definition. Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job.GetJobRuns
returns the job runs in chronological order, with the newest jobs returned first.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
Specifies how Data Quality assets in your account should be encrypted.
+ * @public + */ +export interface DataQualityEncryption { + /** + *The encryption mode to use for encrypting Data Quality assets. These assets include data quality rulesets, results, statistics, anomaly detection models and observations.
+ *Valid values are SSEKMS
for encryption using a customer-managed KMS key, or DISABLED
.
The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.
+ * @public + */ + KmsKeyArn?: string | undefined; +} + /** * @public * @enum @@ -3583,6 +3616,12 @@ export interface EncryptionConfiguration { * @public */ JobBookmarksEncryption?: JobBookmarksEncryption | undefined; + + /** + *The encryption configuration for Glue Data Quality assets.
+ * @public + */ + DataQualityEncryption?: DataQualityEncryption | undefined; } /** @@ -3716,19 +3755,19 @@ export interface CreateSessionRequest { * G.1X, G.2X, G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks. *For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
A collection of properties to be used as part of each execution of the workflow.
+ *Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
* @public */ DefaultRunProperties?: RecordThe settings for a column statistics task.
* @public @@ -8118,6 +8144,7 @@ export interface PutWorkflowRunPropertiesRequest { /** *The properties to put for the specified run.
+ *Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
* @public */ RunProperties: RecordSpecifies a field to sort by and a sort order.
- * @public - */ -export interface SortCriterion { - /** - *The name of the field on which to sort.
- * @public - */ - FieldName?: string | undefined; - - /** - *An ascending or descending sort.
- * @public - */ - Sort?: Sort | undefined; -} - /** * @internal */ diff --git a/clients/client-glue/src/models/models_3.ts b/clients/client-glue/src/models/models_3.ts index 6242bd1ffcbe..4edb7c636460 100644 --- a/clients/client-glue/src/models/models_3.ts +++ b/clients/client-glue/src/models/models_3.ts @@ -138,11 +138,42 @@ import { ResourceShareType, ResourceState, SchemaVersionNumber, - SortCriterion, ViewDefinition, ViewValidation, } from "./models_2"; +/** + * @public + * @enum + */ +export const Sort = { + ASCENDING: "ASC", + DESCENDING: "DESC", +} as const; + +/** + * @public + */ +export type Sort = (typeof Sort)[keyof typeof Sort]; + +/** + *Specifies a field to sort by and a sort order.
+ * @public + */ +export interface SortCriterion { + /** + *The name of the field on which to sort.
+ * @public + */ + FieldName?: string | undefined; + + /** + *An ascending or descending sort.
+ * @public + */ + Sort?: Sort | undefined; +} + /** * @public */ @@ -724,22 +755,22 @@ export interface StartJobRunRequest { * G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs. *For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The workflow run properties for the new workflow run.
+ *Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
* @public */ RunProperties?: RecordA collection of properties to be used as part of each execution of the workflow.
+ *Run properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
* @public */ DefaultRunProperties?: RecordFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, or G.8X for Spark jobs. Accepts the value Z.2X for Ray notebooks.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
Creates a new trigger.
" + "smithy.api#documentation": "Creates a new trigger.
\nJob arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job.
" } }, "com.amazonaws.glue#CreateTriggerRequest": { @@ -12184,7 +12184,7 @@ "DefaultRunProperties": { "target": "com.amazonaws.glue#WorkflowRunProperties", "traits": { - "smithy.api#documentation": "A collection of properties to be used as part of each execution of the workflow.
" + "smithy.api#documentation": "A collection of properties to be used as part of each execution of the workflow.
\nRun properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
" } }, "Tags": { @@ -12915,6 +12915,43 @@ } } }, + "com.amazonaws.glue#DataQualityEncryption": { + "type": "structure", + "members": { + "DataQualityEncryptionMode": { + "target": "com.amazonaws.glue#DataQualityEncryptionMode", + "traits": { + "smithy.api#documentation": "The encryption mode to use for encrypting Data Quality assets. These assets include data quality rulesets, results, statistics, anomaly detection models and observations.
\nValid values are SSEKMS
for encryption using a customer-managed KMS key, or DISABLED
.
The Amazon Resource Name (ARN) of the KMS key to be used to encrypt the data.
" + } + } + }, + "traits": { + "smithy.api#documentation": "Specifies how Data Quality assets in your account should be encrypted.
" + } + }, + "com.amazonaws.glue#DataQualityEncryptionMode": { + "type": "enum", + "members": { + "DISABLED": { + "target": "smithy.api#Unit", + "traits": { + "smithy.api#enumValue": "DISABLED" + } + }, + "SSEKMS": { + "target": "smithy.api#Unit", + "traits": { + "smithy.api#enumValue": "SSE-KMS" + } + } + } + }, "com.amazonaws.glue#DataQualityEvaluationRunAdditionalRunOptions": { "type": "structure", "members": { @@ -17152,6 +17189,12 @@ "traits": { "smithy.api#documentation": "The encryption configuration for job bookmarks.
" } + }, + "DataQualityEncryption": { + "target": "com.amazonaws.glue#DataQualityEncryption", + "traits": { + "smithy.api#documentation": "The encryption configuration for Glue Data Quality assets.
" + } } }, "traits": { @@ -21378,7 +21421,7 @@ } ], "traits": { - "smithy.api#documentation": "Retrieves the metadata for a given job run. Job run history is accessible for 90 days for your workflow and job run.
" + "smithy.api#documentation": "Retrieves the metadata for a given job run. Job run history is accessible for 365 days for your workflow and job run.
" } }, "com.amazonaws.glue#GetJobRunRequest": { @@ -21447,7 +21490,7 @@ } ], "traits": { - "smithy.api#documentation": "Retrieves metadata for all runs of a given job definition.
", + "smithy.api#documentation": "Retrieves metadata for all runs of a given job definition.
\n\n GetJobRuns
returns the job runs in chronological order, with the newest jobs returned first.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The properties to put for the specified run.
", + "smithy.api#documentation": "The properties to put for the specified run.
\nRun properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
", "smithy.api#required": {} } } @@ -38494,7 +38537,7 @@ "WorkerType": { "target": "com.amazonaws.glue#WorkerType", "traits": { - "smithy.api#documentation": "The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.
The type of predefined worker that is allocated when a job runs. Accepts a value of\n G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.
\nFor the G.1X
worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 94GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.2X
worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 138GB disk, and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.
For the G.4X
worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).
For the G.8X
worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk, and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X
worker type.
For the G.025X
worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk, and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 or later streaming jobs.
For the Z.2X
worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk, and provides up to 8 Ray workers based on the autoscaler.
The workflow run properties for the new workflow run.
" + "smithy.api#documentation": "The workflow run properties for the new workflow run.
\nRun properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
" } } }, @@ -44096,7 +44139,7 @@ } ], "traits": { - "smithy.api#documentation": "Updates a trigger definition.
" + "smithy.api#documentation": "Updates a trigger definition.
\nJob arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to keep them within the Job.
" } }, "com.amazonaws.glue#UpdateTriggerRequest": { @@ -44328,7 +44371,7 @@ "DefaultRunProperties": { "target": "com.amazonaws.glue#WorkflowRunProperties", "traits": { - "smithy.api#documentation": "A collection of properties to be used as part of each execution of the workflow.
" + "smithy.api#documentation": "A collection of properties to be used as part of each execution of the workflow.
\nRun properties may be logged. Do not pass plaintext secrets as properties. Retrieve secrets from a Glue Connection, Amazon Web Services Secrets Manager or other secret management mechanism if you intend to use them within the workflow run.
" } }, "MaxConcurrentRuns": {