Separation of Ztoc and compression algorithm

Problem statement and design goals

Soci snapshotter’s Ztoc is tightly coupled with the compression algorithm. This results in inflexible implementation of Ztoc
building as well as data extraction. This goes beyond the package soci and also has traces within span manager.
This design doc is trying to achieve the following:

e |t should be easy to support the new version of compression algorithm, by implementing the “compression” interface
and plugging it in in a few places without any rewriting of the existing Ztoc building and file/data extraction logic.

e Separate the zZTOC technology from anything related to containers, layers, or SOCI

To define the separable concepts and also to talk about interfaces and their usage in the new world, let’s first define the big
picture with the with all the components and then go through the stories on how they will stick together.

The Ztoc creation path components and their relations can be found on the diagram below:



SOCI index creation
components

Requests: build individual ztocs {

zioc.Builder knows how to build Ztoc. Has
single implementation

SOCI data path components and their relations can be found on the diagram below (edited the original image from @wsm):



SOCI Data Path components

Requests: offsets into files {

Requests: offsets into files {

Stories for using Ztoc

There are several stories to use the Ztoc. Let’s start defining the interfaces as the stories unfold.

ZTOC CREATION

To create the Ztoc, we need to build two separate pieces and combine them together. Those pieces are: TOC and zZinfo.
TOC contains the array of FileMetadata (https:/github.com/awslabs/soci-snapshotter/blob/main/soci/ztoc.go#L71) and

contains data, which can be obtained solely from the uncompressed tarball.
To be able to build TOC, we suggest using TOCBuilder, which will look as follows:


https://github.com/awslabs/soci-snapshotter/blob/main/soci/ztoc.go#L71

// TocBuilder knows how to deal with .tar and its purpose is to walk through the tarbe
// metadata.

type TocBuilder struct {

}

func (tb *TocBuilder) Build(uncompressedTarball io.SectionReader) (*TOC, error) {
panic ("not implemented")

To be able to separate the TOC from compression, we suggest to remove SpanStart and Spanknd fields from
ztoc. FileMetadata (https://github.com/awslabs/soci-snapshotter/blob/main/soci/ztoc.go#L40-L41). Those fields are
redundant and we can use the existing Uncompres sedOffset and Uncompres sedsSize to compute span boundaries.

Zinfo contains span data along with the collection of checkpoints. This part of Ztoc is very dependent on compression
algorithm. To build Zinfo, we will introduce the interface within the ztoc package, which will have compression specific
implementation.

// ZinfoBuilder 1s responsible for consuming the compressed stream and producing the

// artifacts for building Ztoc

// It will have multiple implementations, based on compression algorithm,

// e.qg. GzipZinfoBuilder, ZstdZinfoBuilder, etc

// And will be consuming and using the low-level compression algorithm specific

// implementations like GzipIndex, which directly call the C code.

type ZinfoBuilder interface {
Build(compressedTarball io.SectionReader, options *ZinfoBuildOptions) (*Zinfo, err
GetTarball (compressedTarball io. SectionReader) (tarball io. SectionReader, err err

type ZinfoBuildOptions struct {
Spansize intt4

For building Ztoc we suggest to introduce ztoc.Builder, which will have the state from ztoc. TOCBuilder and ztoc.ZinfoBuilder:

// ztoc.Builder knows how to build Ztoc.
type Builder struct {
tocBuilder TocBuilder
zinfoBuilder ZinfoBuilder
tarProvider TarProvider
}
func NewBuilder (tb TocBuilder, zb ZinfoBuilder, tp TarProvider) (*Builder, error) {
return &Builder{tocBuilder: tb, zinfoBuilder: zb, tarProvider: tp}, nil

The Ztoc building process will follow the following path:

func (zb *Builder) Build(compressedTarball io.SectionReader, options *ZtocBuildOptions

(*Ztoc, error) {

trb := compression. TarReaderBuilder({}
tarball, err := zb.tarProvider.Decompress (compressedTarball)
if err != nil {

return nil, err


https://github.com/awslabs/soci-snapshotter/blob/main/soci/ztoc.go#L40-L41

}
toc, err := tocBuilder.Build(tarball)

if err != nil {
return nil, err

}
zinfo, err := zinfoBuilder.Build(compressedTarball,
&ZinfoBuildOptions {SpanSize: options. SpanSize})
if err = nil {
return nil, err
}
compressedArchiveSize := compressedTarball. Size()
uncompressedArchiveSize := tarball. Size()
return &Ztoc({
TOC: toc,
CompressedArchiveSize: compressedArchiveSize

UncompressedArchiveSize: uncompressedArchiveSize
Zinfo: zinfo,
// also version and buildtoolid

}, nil

Since we require the tarball, we will define the compres sion. TarProvider

// TarProvider knows how to decompress the compressed tarball.
// Will have multiple implementations for different compression algorithms.
type TarProvider interface {
Decompress (compressedTarball io. SectionReader) (tarball io. SectionReader, err err

Within soci.buildSociLayer we create the implementation of ZinfoBuilder, TarProvider based on the compression
algorithm and TocBuilder. We pass them to create the ZtocBuilder and call Build on it, passing the compressed tarball along
with options.

ZTOC SERIALIZATION AND DESERIALIZATION

When Ztoc is built, it can be serialized. To do so, we introduce the the ztoc. ZtocSerializer. The reason for that is that
Ztoc is serialized with flatbuffers, which require to manually define what will be serialized and how. It will look as follows:

// ZtocSerialier incapsulates the flatbuffers implementation to
// serialize/deserialize Ztoc
type ZtocSerializer struct {}

func (zs *ZtocSerializer) Serialize(ztoc *Ztoc) (io.Reader, digest.Digest, error) ({

flatbuf := ztocToFlatbuffer (ztoc)
buf := bytes.NewReader (flatbuf)
dgst := digest.FromBytes (flatbuf)
size := len(flatbuf)

return buf, ocispec.Descriptor
Digest: dgst,



Size: int64 (size),
}, nil

func (zs *ZtocSerializer) Deserialize(serializedZtoc io.Reader) (*Ztoc, error) {
flatbuf, err := io.ReadAll (reader)
if err = nil {
return nil, err

return flatbufToZtoc (flatbuf), nil

The above implementation references the existing zt ocToFlatbuf fer and flatbufToZtoc functions, which will be
reorganized to fit in ZtocSerializer.

The Serialize method will be called from buildSociLayer (https:/github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/layer.go#L.293):

zs := ZtocSerializer{}
ztocReader, ztocDesc, err := zs.Serialize(ztoc)

The Deserialize method will be called from current fs.layer.Resolve after obtaining the
ztocReader (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/layer.go#L293):

zs := ZtocSerializer({}
ztoc, err := zs.Deserialize(ztocReader)

FILE ACCESS - SNAPSHOTTER’S STORY

FUSE calls fs.node.Open (https:/github.com/awslabs/soci-snapshotter/blob/main/fs/layer/node.go#L.330), which will return the
file handler as the file implementation in node.go, containing node and ReaderAt (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/node.go#L413).

fs.node.Open calls fs.reader.OpenFile (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L.170), calling metadata reader’s
OpenFile (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/metadata/db/reader.go#L506), collecting the uncompressed
offset along with the file size (from metadata db).

Once the read operation comes in, it lands at node.Read, which calls node.reader.ReadAt (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L.213).

Within the reader type (https://github.com/awslabs/soci-
snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L.213) we’ll keep the SpanManager as
it is right now. SpanManager will know only about spans and will keep the cache for the uncompressed span data. The


https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/layer.go#L293
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/layer.go#L293
https://github.com/awslabs/soci-snapshotter/blob/main/fs/layer/node.go#L330
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/layer/node.go#L413
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L170
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/metadata/db/reader.go#L506
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L213
https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L213

BlobReader (which implements io.ReaderAt) will be providing with the compressed span content as well as serve as cache for
compressed spans.

To separate compression from SpanManager, we propose to introduce the Extractor interface:

// Extractor extracts using the low level implementation for dealing with
// compression checkpoints.
// It implements the compression algorithm, so there will be GzipExtractor,
// ZstdExtractor, etc.
type Extractor interface {
// Extract returns io.Reader containing uncompressed data
// glven compressed stream, uncompressedSize and uncompressedOffset.
Extract (compressedStream io.Reader, uncompressedSize, uncompressedOffset Offset)

compression.GzipZinfo, compression.ZstdZinfo, etc will be implementing compression.Extractor, which will provide with low-
level implementation to extract data, depending on the compression algorithm:

func (zi *Zinfo) Extractor () (Extractor, err) {

return zi.gzipzZinfo, nil

The adjusted SpanManager struct will look as follows:

// SpanManager does caching of uncompressed spans only.
// SpanManager does not know about compression algorithm, since this is handled by
// Extractor.
type SpanManager struct ({
extractor compression. Extractor
blobReader io.ReaderAt
// other members

With the above implementation, fetchAndCache S pan on span manager will no longer cache compressed spans. It will be
caching uncompressed spans only.
Within fetchAncCache S pan there will be a call to Extract:

func (m *SpanManager) fetchAndCacheSpan(spanID soci. SpanID) (io.SectionReader, error)
s := m.spans|[spanlD]

compressedReader, err := m.fetchSpan(spanlD)

// get uncompressedOffset and uncompressed size from span

uncompSize := s.endUncompOffset - s.startUncompOffset

uncompOffset := s.startUncompOffet

uncompSpan, err := m.extractor.Extract (compressedBuf, uncompSize, uncompOffset)
if err != nil {

return nil, err


https://github.com/awslabs/soci-snapshotter/blob/cef680e7168aed00f629bcced76397d233f35e92/fs/reader/reader.go#L213

return uncompsSpan, nil

Span manager’s fetchAndCacheSpan is taking care of two things:

e checking the cache for uncompressed span content
e calling fetchSpan, which returns the compressed reader
e decompressing and caching the uncompressed span
SpanManager’s fetchSpan will be using the underlying BlobReader to fetch the span.

Instead of doing decompression using gzip_zinfo, SpanManager will be using Extractor.Extract to do the job. This will allow to
decouple compression algorithm implementation from span manager.

The diagram below summarizes the data flow during file read (the database sign refers to the caching layers):

node nodeReader SpanManager S BlobReader

ReadAt(buf [Jbyie, offsetinFile int64) _

GetContents(offsetStart, OffsetEnd)

|
|
|
|
|

L

>

loo, [for each span that contains part of the uncompressed data]

' GetBytes(offsetinCompressedStream)

| _ Io.Reader

>

| Extract(compressedReader)

|
I (uncompressedReader io.Reader, error)
3

_ io.ReaderAt with uncompressed content |
<

__ requested byte sequence from file |

SpanManager BlobReader

node nodeReader Extractor

It's worth mentioning that the SpanManager—BlobReader—Extractor flow is a loop for each span that contains part of the
uncompressed data.

FILE ACCESS - ZTOC.EXTRACTFILE STORY

The interface for Ztoc.ExtractFile remains the same. Accessing the file, will require to use the SpanManager to extract the data
(no caching on SpanManager in this case):

func (z* Ztoc) ExtractFile(r *io. SectionReader, config *FileExtractConfig) ([]byte, err
sm, err := spanmmanager.New(z, TI)
if err = nil {
return nil, err

}

start := config. UncompressedOffset

end := config. UncompressedOffset + config.UncompressedsSize
contentReader, err := sm.GetContents (start, end)

if err = nil {



return nil, err
}
_, err := contentReader.Read(bytes)
if err = nil {
return nil, err
}
return bytes, nil

The SpanManager’s behavior is exactly the same as in snapshotter’s story.

Action items

10.

1.
12.

13.

14.

15.

16.

. [Done] Extractor.Extract how will it know which checkpoint to use?
. In theory a single image may have gzip & zstd layers intermixed. How does this design solve it?

. [Done] Add a block diagram showing the components and their dependencies at the Problem Statement section (don't

need a full UML diagram, just something to give us a roadmap for the rest of the document, before we set out on the
journey. Or maybe a one line description of the major interfaces)

. [Done] Put the stories upfront and describe the data flow at the function call
. [Done] Try to write it as a paragraph, not as numbered list

. Example of Ztoc and other structs we are calling

a. Putin the appendix

. Separate Ztoc from anything related to containers, layers or soci related

. [Done - only span manager deals with spans] In the ztoc spans are not modeled, in the extraction we think in terms

of spans

. [Done] Documentation

a. Provide more context on the state stack in the entities I'm referring to
[Done] Try to find some language between checkpoint and span to make it easier to understand
a. Maybe call it SpanDecompressor?
b. Maybe call BuildCompressionContext
[Done - deferred] Implement fs interface. FS.Open
[Done - see snapshotter’s file access story for more details] Layers:
a. Files - FileExtractor
b. Spans - SpanExtractor
c. Checkpoints - Decompressor extract arbitrary data from checkpoints
[Done - see snapshotter’s file access story for more details] SpanManager will be the middle layer for 7?
a. Move download data - separate layer from SpanManager into section reader

[Done - see snapshotter’s file access story for more details] FS asks open file ztoc. Ztoc is created from the section
reader from the compressed stream. It can create a span mgr w/ the appropriate uncompressor and then span mgr can
do the work of combining those

[Done] Or extractor is given the io stream. It takes offsets you are going to extract. Span mgr has knowledge of
extractor

Section readers everywhere. Do they need to be abstracted? Maybe we can be constructing



